Ethnopharmacological Relevance: Buyang Huanwu Decoction, a traditional Chinese medicine, consists of different herbal medicines, and has been traditionally used for centuries to treat paralysis and stroke. However, its optimal therapeutic time window and the mechanism are still unclear.

Aim Of The Study: This study was designed to explore the therapeutic time window and mechanism of Buyang Huanwu Decoction on transient focal cerebral ischemia/reperfusion injury.

Materials And Methods: Middle cerebral artery occlusion was conducted in male Sprague-Dawley rats, and 40g/kg of Buyang Huanwu Decoction was intragastrically infused at different time points, and the same dose was infused every 24h for 3 days. The level of glutamate in cerebrospinal fluid and the expression of metabotropic glutamate receptor-1 RNA in striatum were detected before, during, and after ischemia/reperfusion. Neurological deficit scores and brain infarction volumes were measured at 72h after reperfusion.

Result: Cerebral ischemia/reperfusion resulted in significant neurological deficit and extensive cerebral infarct volume, associated with a large amount of glutamate in cerebrospinal fluid and elevation of metabotropic glutamate receptor-1 RNA expression. Buyang Huanwu Decoction significantly suppressed the release of glutamate, and reduced the expression of metabotropic glutamate receptor-1 RNA. The neurological defect score and infarction volume were significantly improved by administration of Buyang Huanwu Decoction, when compared with the Ischemia group.

Conclusions: Administration of Buyang Huanwu Decoction, within 4h of post-transient focal stroke, reduced significant cerebral ischemia/reperfusion damage. The neuroprotective mechanism of Buyang Huanwu Decoction is, in part, associated with the down-regulation of metabotropic glutamate receptor-1 RNA and inhibition of glutamate release resulting from cerebral ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2012.01.026DOI Listing

Publication Analysis

Top Keywords

buyang huanwu
32
huanwu decoction
32
cerebral ischemia/reperfusion
16
metabotropic glutamate
16
glutamate receptor-1
16
receptor-1 rna
16
window mechanism
12
huanwu
8
decoction
8
focal cerebral
8

Similar Publications

Buyang Huanwu Decoction prevents hemorrhagic transformation after delayed t-PA infusion via inhibiting NLRP3 inflammasome/pyroptosis associated with microglial PGC-1α.

J Ethnopharmacol

December 2024

Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. Electronic address:

Ethnopharmacological Relevance: Delayed tissue-type plasminogen activator (t-PA) thrombolysis, which has a restrictive therapeutic time window within 4.5 h following ischemic stroke (IS), increases the risk of hemorrhagic transformation (HT) and subsequent neurotoxicity. Studies have shown that the NLRP3 inflammasome activation reversely regulated by the PGC-1α leads to microglial polarization and pyroptosis to cause damage to nerve cells and the blood-brain barrier.

View Article and Find Full Text PDF

Buyang huanwu decoction inhibits the activation of the RhoA/Rock2 signaling pathway through the phenylalanine metabolism pathway, thereby reducing neuronal apoptosis following cerebral ischemia-reperfusion injury.

J Ethnopharmacol

December 2024

Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China. Electronic address:

Ethnopharmacological Relevance: Buyang Huanwu Decoction (BYHWD) exerts its anti-cerebral ischemia effects through multiple pathways and targets, although its specific mechanisms remain unclear.

Aim Of The Study: Ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) metabolomics and other methods were employed to investigate the role of BYHWD in inhibiting neuronal apoptosis following cerebral ischemia-reperfusion by modulating the RhoA/Rock2 pathway.

Methods: A rat model of exhaustion swimming combined with middle cerebral artery occlusion (ES + I/R) was established to evaluate the intervention effects of Buyang Huanwu Decoction on cerebral ischemia-reperfusion.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Buyang Huanwu Decoction (BYHWD), a traditional prescription known for its Supplementing Qi and Promoting Blood Circulation, has demonstrated noteworthy therapeutic roles in regulating macrophage polarization to atherosclerosis (AS). However, its underlying mechanisms remain unknown.

Aim Of The Study: The purpose of this paper was to decipher mechanism of BYHWD in regulating macrophage polarization to alleviate AS.

View Article and Find Full Text PDF

The LDL Receptor-Related Protein 1: Mechanisms and roles in promoting Aβ efflux transporter in Alzheimer's disease.

Biochem Pharmacol

January 2025

The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China. Electronic address:

The LDL Receptor-Related Protein 1(LRP1), a member of the Low-density Lipoprotein (LDL) receptor family, is a multifunctional cellular transporter and signaling receptor, this includes regulation of lipid metabolism, cell migration and signaling. Abnormal accumulation of amyloid beta (Aβ) in the brain is thought to be the main pathological change in Alzheimer's disease. By binding to a variety of ligands, LRP1 is involved in the internalization and degradation of Aβ, thereby affecting the course of Alzheimer's disease (AD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!