Huntington's disease (HD) is caused by the expansion of the polyglutamine tract expressed in the huntingtin protein. Data from patients show a strong negative correlation between CAG repeat size and age of disease onset. Recent studies in mixed background C57×CBA R6/2 mice suggest the inverse correlation observed in the human disease may not be replicated in some animal models of HD. To further clarify the relationship between repeat length and age of onset, congenic C57BL6/J R6/2 transgenic mice expressing 110, 260 or 310 CAG were tested in a comprehensive behavioral battery at multiple ages. Data confirmed the findings of earlier studies and indicate that on a pure C57BL6/J genetic background, R6/2 mice with larger repeats exhibit a delay in phenotypic onset with increasing polyglutamine size (6 weeks in 110 CAG and 17 weeks in 310 CAG mice). Further analysis confirmed a decrease in transgene transcript expression in 310 CAG mice as well as differential aggregated protein localization in association with repeat length. Mice expressing 110 CAG developed aggregates that localized almost exclusively to the nucleus of neuronal cells in the striatum and cortex. In contrast, tissue from 310 CAG mice exhibited predominantly extranuclear inclusions. Novel mutant protein analysis obtained using time-resolved fluorescence resonance energy transfer (FRET) revealed that soluble protein levels decreased with disease onset in R6/2 mice while aggregated protein levels increased. We believe that these data suggest a role for aggregation and inclusion localization in HD pathogenesis and propose a mechanism for the age of onset delay observed in R6/2 mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2011.12.045DOI Listing

Publication Analysis

Top Keywords

r6/2 mice
16
310 cag
16
cag mice
12
mice
9
phenotypic onset
8
onset r6/2
8
huntington's disease
8
disease onset
8
repeat length
8
age onset
8

Similar Publications

Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease.

Neurobiol Dis

December 2024

Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed.

View Article and Find Full Text PDF

There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking.

View Article and Find Full Text PDF
Article Synopsis
  • - Huntington's disease (HD) is a genetic neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene, leading to the accumulation of harmful mutant proteins in nerve cells.
  • - The NLRP3 inflammasome plays a crucial role in inflammation and its overactivation contributes to neurodegeneration in HD; inhibiting it showed potential benefits in mice by reducing toxic inflammation and neuronal damage.
  • - Antcin-H, a compound derived from the medicinal fungus Antrodia cinnamomea, was found to decrease neuroinflammation and toxicity while improving motor function and survival rates in a mouse model of HD, indicating its potential as a therapeutic option.
View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disorder with no cure, characterized by significant neurodegeneration of striatal GABAergic medium spiny neurons (MSNs). Early stages of the disease are characterized by the loss of dopamine 2 receptor-expressing MSNs (D2 MSNs) followed by degeneration of dopamine 1 receptor-expressing MSNs (D1 MSNs), leading to aberrant basal ganglia signaling. While the early degeneration of D2 MSNs and impaired GABAergic transmission are well-documented, potassium chloride cotransporter 2 (KCC2), a key regulator of intracellular chloride (Cl), and therefore GABAergic signaling, has not been characterized in D1 and D2 MSNs in HD.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the interaction between valosin-containing protein (VCP) and mutant huntingtin (mtHtt) can help prevent mitochondrial damage in Huntington's disease models.
  • A newly developed protein-like polymer (PLP) has shown effectiveness in cellular and animal models, significantly inhibiting mitochondrial destruction and proving more stable than control oligopeptides.
  • PLP has a remarkably longer circulation half-life (152 hours) and outperforms free peptide in efficacy tests, suggesting it could be a promising platform for developing treatments for central nervous system disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!