Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Articulated structures like the human body have many degrees of freedom. This makes an evaluation of the configuration's likelihood very challenging. In this work we propose new linked hierarchical graphical models which are able to efficiently evaluate likelihoods of articulated structures by sharing visual primitives. Instead of evaluating all configurations of the human body separately we take advantage of the fact that different configurations of the human body share body parts, and body parts, in turn, share visual primitives. A hierarchical Markov random field is used to integrate the sharing of visual primitives in a probabilistic framework. We propose a scalable hierarchical representation of the human body and show that this representation is especially well suited for human gait analysis from a frontal camera perspective. Furthermore, the results of the evaluation on a gait dataset show that sharing primitives substantially accelerates the evaluation and that our hierarchical probabilistic framework is a robust method for scalable detection of the human body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2011.12.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!