Metal coordination is required for function of many proteins. For biosynthesis of proteins coordinating a metal, the question arises if the metal binds before, during or after folding of the polypeptide. Moreover, when the metal is bound to the protein, how does its coordination affect biophysical properties such as stability and dynamics? Understanding how metals are utilized by proteins in cells on a molecular level requires accurate descriptions of the thermodynamic and kinetic parameters involved in protein-metal complexes. Copper is one of the essential transition metals found in the active sites of many key proteins. To avoid toxicity of free copper ions, living systems have developed elaborate copper-transport systems that involve dedicated proteins that facilitate efficient and specific delivery of copper to target proteins. This review describes in vitro and in silico biophysical work assessing the role of copper in folding and stability of copper-binding proteins. Examples of proteins discussed are: a blue-copper protein (Pseudomonas aeruginosa azurin), members of copper-transport systems (bacterial CopZ, human Atox1 and ATP7B domains) and multi-copper ferroxidases (yeast Fet3p and human ceruloplasmin). The consequences of interactions between copper proteins and platinum-complexes are also discussed. This article is part of a Special Issue entitled: Cell Biology of Metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2012.01.013 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.
Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.
Discov Oncol
January 2025
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFOrv Hetil
January 2025
1 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Klinikai Központ, Aneszteziológiai és Intenzív Terápiás Intézet Pécs, Ifjúság u. 13., 7624 Magyarország.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!