Brain atlas construction has attracted significant attention lately in the neuroimaging community due to its application to the characterization of neuroanatomical shape abnormalities associated with various neurodegenerative diseases or neuropsychiatric disorders. Existing shape atlas construction techniques usually focus on the analysis of a single anatomical structure in which the important inter-structural information is lost. This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas based on an information geometry framework. A shape complex is a collection of neighboring shapes - for example, the thalamus, amygdala and the hippocampus circuit - which may exhibit changes in shape across multiple structures during the progression of a disease. In this paper, we represent the boundaries of the entire shape complex using the zero level set of a distance transform function S(x). We then re-derive the relationship between the stationary state wave function ψ(x) of the Schrödinger equation [formula in text] and the eikonal equation [formula in text] satisfied by any distance function. This leads to a one-to-one map (up to scale) between ψ(x) and S(x) via an explicit relationship. We further exploit this relationship by mapping ψ(x) to a unit hypersphere whose Riemannian structure is fully known, thus effectively turn ψ(x) into the square-root of a probability density function. This allows us to make comparisons - using elegant, closed-form analytic expressions - between shape complexes represented as square-root densities. A shape complex atlas is constructed by computing the Karcher mean ψ¯(x) in the space of square-root densities and then inversely mapping it back to the space of distance transforms in order to realize the atlas shape. We demonstrate the shape complex atlas computation technique via a set of experiments on a population of brain MRI scans including controls and epilepsy patients with either right anterior medial temporal or left anterior medial temporal lobectomies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2012.01.095 | DOI Listing |
Sci Rep
December 2024
Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.
The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Geographic Information System, Chinese Academy of Surveying and mapping, Beijing, 100036, China.
Geographic entity matching is an important means for multi-source spatial data fusion and information association and sharing. Corresponding matching methods have been designed by existing studies for different types of entity data characteristics, such as line and area. However, these approaches are often limited in the generalization ability for matching heterogeneous data from multiple sources and the accuracy for complex pattern matching.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.
Millimeter-wave and terahertz integrated circuits and chips are expected to serve as the backbone for future wireless networks and high resolution sensing. However, design of these integrated circuits and chips can be quite complex, requiring years of human expertise, careful tailoring of hand crafted circuit topologies and co-design with parameterized and pre-selected templates of electromagnetic structures. These structures (radiative and non-radiative, single-port and multi-ports) are subsequently optimized through ad-hoc methods and parameter sweeps.
View Article and Find Full Text PDFEcol Lett
December 2024
Florida State University, Tallahassee, Florida, USA.
Marine heatwaves (MHWs) caused by multiple phenomena with days to months duration are increasingly common disturbances in ocean ecosystems. We investigated the impacts of MHWs on pelagic communities using spatially resolved time-series of multiple trophic levels from the Southern California Current Ecosystem. Indices of phytoplankton biomass mostly declined during MHWs because of reduced nutrient supply (excepting Prochlorococcus) and were generally more sensitive to marine heatwave intensity than duration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!