The present investigation provides mechanistic insights into the hyperglycemic and stressogenic effects of monocrotophos, an organophosphorus insecticide. Pre-treatment of rats with mifepristone (glucocorticoid receptor antagonist) prevented induction of liver tyrosine aminotransferase activity (TAT), but was ineffective in attenuating hyperglycemia induced by monocrotophos. Pre-treatment with propranolol (β-adrenergic receptor antagonist) and phentolamine (α-adrenergic receptor antagonist) were effective in abrogating monocrotophos-induced hyperglycemia. Interestingly, while propranolol offered partial protection against hyperglycemia, phentolamine completely abolished the same. However, monocrotophos-induced hyperlactacidemia was completely abolished by propranolol. Both the adrenoreceptor antagonists, however, failed to attenuate the stressogenic potential of monocrotophos. Hyperglycemia and hyperlactacidemia induced by monocrotophos were abolished by pre-treatment with atropine. Exogenous epinephrine was associated with hyperglycemia and hyperlactacidemia. The impact of adrenergic antagonists on epinephrine-induced hyperglycemia and hyperlactacidemia were remarkably similar to that of monocrotophos-induced hyperglycemia and hyperlactacidemia. Further, hydrazine sulfate (a gluconeogenesis inhibitor) abolished hyperglycemia in monocrotophos-treated rats. From our data, it can be hypothesized that excessive stimulation of adrenoreceptors, probably elicited by increased plasma epinephrine, mediates hyperglycemic outcomes induced by monocrotophos. Pattern of changes in plasma lactate suggests that β-adrenergic activation mediates monocrotophos-induced hyperlactacidemia, while α-adrenergic receptor mediates lactate utilization, leading to hyperglycemia. Induction of liver TAT activity is attributable to glucocorticoid receptor activation as a result of hypercorticosteronemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2012.01.009 | DOI Listing |
J Med Cases
December 2020
Departamento de Biologia Molecular, CCEN, UFPB, Joao Pessoa, PB, Brazil.
Malignant hyperthermia (MH) is an acute pharmacogenetic disorder, which while uncommon is potentially fatal. MH is a calcium channelopathy of skeletal muscle in which a constant increase of intracytoplasmic Ca concentration occurs causing a change in cellular metabolism. A hypermetabolic state develops when susceptible patients are exposed to halogenated volatile inhalational anesthetic agents and depolarizing muscle relaxants and/or extreme physical activity in hot environments.
View Article and Find Full Text PDFDiabetes
December 2019
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia. However, development of uncoupler-based therapy remains challenging due to its potentially lethal adverse effects. Here, we identify pyruvate dehydrogenase (PDH) as a key modifier of the toxicity profile of 2, 4-dinitrophenol (DNP), a prototypical mitochondrial uncoupler.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
April 2017
Intergen Genetic Center, Ankara.
Background: Glycogen synthase deficiency, also known as glycogenosis (GSD) type 0 is an inborn error of glycogen metabolism caused by mutations in the GYS2 gene, which is transmitted in an autosomal recessive trait. It is a rare form of hepatic glycogen storage disease with less than 30 cases reported in the literature so far. The disorder is characterized by fasting hyperketotic hypoglycemia without hyperalaninemia or hyperlactacidemia.
View Article and Find Full Text PDFToxicology
March 2012
Food Protectants and Infestation Control Department, Central Food Technological Research Institute, Mysore 570020, India.
The present investigation provides mechanistic insights into the hyperglycemic and stressogenic effects of monocrotophos, an organophosphorus insecticide. Pre-treatment of rats with mifepristone (glucocorticoid receptor antagonist) prevented induction of liver tyrosine aminotransferase activity (TAT), but was ineffective in attenuating hyperglycemia induced by monocrotophos. Pre-treatment with propranolol (β-adrenergic receptor antagonist) and phentolamine (α-adrenergic receptor antagonist) were effective in abrogating monocrotophos-induced hyperglycemia.
View Article and Find Full Text PDFClin Chim Acta
January 1997
Alcohol Research and Treatment Center, Bronx VA Medical Center, New York 10468, USA.
Alcohol-induced tissue damage results from associated nutritional deficiencies as well as some direct toxic effects, which have now been linked to the metabolism of ethanol. The main pathway involves liver alcohol dehydrogenase which catalyzes the oxidation of ethanol to acetaldehyde, with a shift to a more reduced state, and results in metabolic disturbances, such as hyperlactacidemia, acidosis, hyperglycemia, hyperuricemia and fatty liver. More severe toxic manifestations are produced by an accessory pathway, the microsomal ethanol oxidizing system involving an ethanol-inducible cytochrome P450 (2E1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!