Structural variations are among the most frequent interindividual genetic differences in the human genome. The frequency and distribution of de novo somatic structural variants in normal cells is, however, poorly explored. Using age-stratified cohorts of 318 monozygotic (MZ) twins and 296 single-born subjects, we describe age-related accumulation of copy-number variation in the nuclear genomes in vivo and frequency changes for both megabase- and kilobase-range variants. Megabase-range aberrations were found in 3.4% (9 of 264) of subjects ≥60 years old; these subjects included 78 MZ twin pairs and 108 single-born individuals. No such findings were observed in 81 MZ pairs or 180 single-born subjects who were ≤55 years old. Recurrent region- and gene-specific mutations, mostly deletions, were observed. Longitudinal analyses of 43 subjects whose data were collected 7-19 years apart suggest considerable variation in the rate of accumulation of clones carrying structural changes. Furthermore, the longitudinal analysis of individuals with structural aberrations suggests that there is a natural self-removal of aberrant cell clones from peripheral blood. In three healthy subjects, we detected somatic aberrations characteristic of patients with myelodysplastic syndrome. The recurrent rearrangements uncovered here are candidates for common age-related defects in human blood cells. We anticipate that extension of these results will allow determination of the genetic age of different somatic-cell lineages and estimation of possible individual differences between genetic and chronological age. Our work might also help to explain the cause of an age-related reduction in the number of cell clones in the blood; such a reduction is one of the hallmarks of immunosenescence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276669 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2011.12.009 | DOI Listing |
J Psychiatry Neurosci
January 2025
From the Department of Psychiatry, Yale University School of Medicine, New Haven, Conn., USA (Chen, Luo, Ide, C.-S. Li); Yale University, New Haven, Conn., USA (H.-T. Li); the Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China (G. Li); the Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China (G. Li); the Department of Neuroscience, Yale University School of Medicine, New Haven, Conn., USA (C.-S Li); the Interdepartment Neuroscience Program, Yale University, New Haven, Conn., USA (C.-S. Li); the Wu Tsai Institute, Yale University, New Haven, Conn., USA (C.-S. Li).
Background: Genetic variants may confer risk for depression by modulating brain structure and function; evidence has underscored the key role of the subgenual anterior cingulate cortex (sgACC) in depression. We sought to examine how the resting-state functional connectivity (rsFC) of the sgACC was associated with polygenic risk for depression in a subclinical population.
Methods: Following published protocols, we computed seed-based whole-brain sgACC rsFC and calculated polygenic risk scores (PRS) using data from healthy young adults from the Human Connectome Project.
Psychiatr Q
January 2025
Educational psychology, The Hashemite University, Queen Rania Faculty for Childhood, Early Childhood Department, Zarqa, Jordan.
The current paper aimed to estimate the network structure of general psychopathology (internalizing and externalizing symptoms/disorders) among 239 gifted children in Jordan. This cross-sectional study with a convenience sampling method was conducted between September 2023 and October 2024 among gifted children aged 7-12. The Child Behavior Checklist (CBCL) was employed to assess six symptom clusters: conduct problems, attention-deficit/hyperactivity disorder (ADHD), and oppositional defiant problems as externalizing symptoms, and affective problems, anxiety issues, and somatic complaints as internalizing symptoms.
View Article and Find Full Text PDFJ Oral Facial Pain Headache
December 2024
Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland.
Temporomandibular disorders (TMD) comprise a group of conditions affecting the masticatory muscles, the temporomandibular joints and associated structures, often manifesting as orofacial pain and functional limitations of the mandible. Central sensitization (CS) is gaining increasing attention in research focused on pain syndromes and somatization, playing a significant role in the pain experience. This study investigates the prevalence of CS and somatization among TMD patients, analyzing their relationships with TMD diagnoses and the intensity of chronic masticatory muscle pain (MMP).
View Article and Find Full Text PDFGenes Dev
December 2024
Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!