Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of sliding velocity on the adhesion force in a nanometer-sized contact was investigated with a novel atomic force microscope experimental setup that allows measuring adhesion forces while the probe is sliding at continuous and constant velocities. For hydrophobic surfaces, the adhesion forces (mainly van der Waals forces) remain constant, whereas for hydrophilic surfaces, adhesion forces (mainly capillary forces) decrease linearly with a logarithmic increase of the sliding velocity. The experimental data are well explained by a model based on a thermally activated growth process of a capillary meniscus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.108.015503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!