Characterization of acoustic droplet formation in a microfluidic flow-focusing device.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Published: December 2011

Local control of droplet formation with acoustic actuation in a microfluidic flow-focusing device is investigated, and the effects of acoustic voltage, frequency, flow-rate ratio, fluid viscosity, and flow vorticity are characterized. Acoustic actuation is provided to affect droplet breakup in the squeezing regime by imposing periodic oscillation to the fluid-fluid interface and, therefore, a periodic change in its curvature at the cross-junction of the device. Time reduction is observed for the three key stages of droplet breakup in the squeezing regime: dispersed phase flow-front advancement into the orifice, pressure buildup upstream and within the orifice together with liquid inflation downstream, and finally the thinning and pinch-off of the liquid thread. It is found that acoustic actuation has less of an effect on droplet size for the continuous phase with a higher viscosity due to the restrained interfacial vibration under a high shear stress environment. Periodic velocity flow fields within the dispersed phase at different phases of one oscillation cycle are calculated based on the results from phase-averaged microresolution-particle-image velocimetry (μPIV). The oscillation paths for the points of maximum vorticities of phase-averaged velocity components are traced, which reveals that the motion is mainly along the y direction.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.066310DOI Listing

Publication Analysis

Top Keywords

acoustic actuation
12
droplet formation
8
microfluidic flow-focusing
8
flow-focusing device
8
droplet breakup
8
breakup squeezing
8
squeezing regime
8
dispersed phase
8
droplet
5
characterization acoustic
4

Similar Publications

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate KNaNbO (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V with outstanding characteristics: (1) a large vibration amplitude of 3.

View Article and Find Full Text PDF

Fluid-Structure Interaction Analysis of Trapezoidal and Arc-Shaped Membranes Mimicking the Organ of Corti.

Int J Numer Method Biomed Eng

January 2025

Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan.

In a previous study [H. Shintaku et al., Sensors and Actuators A: Physical 158 (2010): 183-192], an artificially developed auditory sensor device showed a frequency selectivity in the range from 6.

View Article and Find Full Text PDF

Micro/nanomotors (MNMs) are highly versatile small-scale devices capable of converting external energy inputs into active motion. Among the various energy sources, light stands out due to its abundance and ability to provide spatiotemporal control. However, the effectiveness of light-driven motion in complex environments, such as biological tissues or turbid water, is often limited by light scattering and reduced penetration.

View Article and Find Full Text PDF

This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data processing was set up to test the sensors' ability to detect cable damage, like wire breaks and abrasion, while also examining the effect of potential disruptors such as rope soiling. Machine learning algorithms were applied to improve the damage detection accuracy, leading to significant advancements in magnetostrictive measurement methods and providing a new standard for future development in this area.

View Article and Find Full Text PDF
Article Synopsis
  • * A specialized flexible circuit board was created to connect and actuate all transducer elements, using a bending-and-superposition manufacturing method that effectively binds the components.
  • * The transducer demonstrated impressive performance metrics, including a center frequency of 2.72 MHz, a bandwidth of 36%, and low crosstalk levels, showcasing the potential of this fabrication technique and material combination.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!