Self-consistent inhomogeneous steady states in Hamiltonian mean-field dynamics.

Phys Rev E Stat Nonlin Soft Matter Phys

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

Published: December 2011

Long-lived quasistationary states, associated with stationary stable solutions of the Vlasov equation, are found in systems with long-range interactions. Studies of the relaxation time in a model of N globally coupled particles moving on a ring, the Hamiltonian mean-field model (HMF), have shown that it diverges as N(γ) for large N, with γ1.7 for some initial conditions with homogeneously distributed particles. We propose a method for identifying exact inhomogeneous steady states in the thermodynamic limit, based on analyzing models of uncoupled particles moving in an external field. For the HMF model, we show numerically that the relaxation time of these states diverges with N with the exponent γ ~/= 1. The method, applicable to other models with globally coupled particles, also allows an exact evaluation of the stability limit of homogeneous steady states. In some cases, it provides a good approximation for the correspondence between the initial condition and the final steady state.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.061151DOI Listing

Publication Analysis

Top Keywords

steady states
12
inhomogeneous steady
8
hamiltonian mean-field
8
relaxation time
8
globally coupled
8
coupled particles
8
particles moving
8
states
5
self-consistent inhomogeneous
4
steady
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!