Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells.

Langmuir

Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China.

Published: February 2012

In this study, a novel Au nanocluster (NC)-based fluorescent sensor has been designed for near-infrared (NIR) and turn-on sensing of glutathione (GSH) in both living cells and human blood samples. The large Stokes-shifted (140 nm) fluorescent Au NCs with NIR emission and long-wavelength excitation have been rapidly synthesized for 2 h by means of a microwave-assisted method in aqueous solution. The addition of Hg(II) leads to an almost complete emission quenching (98%) of Au NCs because of the interaction of Hg(II) and Au(I) on the surface of Au NCs. After introducing GSH to the Au NC-Hg(II) system, a more than 20 times fluorescent enhancement is obtained because of the preferable affinity of GSH with Hg(II). Under optimum conditions, the fluorescence recovery is linearly proportional to the concentration of GSH between 0.04 and 16.0 μM and the detection limit is as low as 7.0 nM. This Au NC-based sensor with high sensitivity and low spectral interference has been proven to facilitate biosensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la204380aDOI Listing

Publication Analysis

Top Keywords

turn-on sensing
8
sensing glutathione
8
living cells
8
gold nanocluster-based
4
fluorescent
4
nanocluster-based fluorescent
4
fluorescent probes
4
probes near-infrared
4
near-infrared turn-on
4
glutathione living
4

Similar Publications

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

A-D-A type fluorescent probe with dual quaternary-ammonium-salt anchors for turn on detection of HSA in wide emission gamut.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China. Electronic address:

Human serum albumin (HSA) is a key protein implicates in various physiological and pathological conditions such as renal injury, diabetes mellitus. Herein, we report an AIE-active fluorescent probe (DNI-4) for detection of HSA with a "turn on" response covering visible and near-infrared region (500 - 800 nm). Combining with a triphenylamine and two 1,8-naphthalimide moieties, the chromophore segment of DNI-4 forms a "A-D-A" type molecular architecture with the twisted intramolecular charge transfer property.

View Article and Find Full Text PDF

Engineering thermostable fluorescent DNA aptamer for the isothermal amplification of nucleic acids.

Biosens Bioelectron

January 2025

Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:

Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.

View Article and Find Full Text PDF

A Potent Bis-Heteroleptic Ruthenium(II) Complex-Based Chalcogen Bonding Receptor for Selective Sensing of Phosphates.

Inorg Chem

January 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India.

The incorporation of a selenoimidazolium-based chalcogen bond (ChB) donor into a bis-heteroleptic Ru(II) complex (Ru-Se) has been designed for the first time to explore its anion-sensing properties and understand its selectivity to specific classes of anions. Photophysical studies demonstrate the receptor's selectivity toward phosphates, while H NMR displays its ability to recognize both I and HPO among the different halides and oxoanions through ChB interaction in CHCN and dimethyl sulfoxide- solvents, respectively. Additionally, microscopic studies such as DLS and TEM reveal that the selective turn-on sensing of HPO and HPO compared to I is driven by supramolecular aggregation behavior.

View Article and Find Full Text PDF

By a simple condensation reaction, the receptor with anthraquinone moiety was synthesized and its sensing properties were explored in the anion sensing studies via colorimetric, UV-vis studies, fluorescence studies, and DFT calculations. The synthesized receptor senses both acetate and hypochlorite ions in DMSO medium. By the addition of all anions into the receptor the colour change was observed from pink to light purple colour for acetate ion and pink to light blue for hypochlorite ion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!