Osteoarthritis (OA) is a disease that commonly affects human and veterinary patients. Animal models are routinely used for OA research, and the dog is a nearly ideal species for translational investigation of human OA biomarkers. The cytokine, chemokine, and matrix metalloprotease (MMP) profiles of synovial fluid, serum, and urine from dogs with surgically induced and naturally occurring OA were compared with dogs without OA using xMAP technology (Qiagen Inc., Valencia, CA). Markers that exhibited significant differences between groups were identified (monocyte chemoattractant protein 1 [MCP1], interleukin 8 [IL8], keratinocyte-derived chemoattractant [KC], and MMP2 and MMP3), and their sensitivities and specificities were calculated to determine their diagnostic usefulness in a future biomarker panel. Synovial fluid IL8 was the most sensitive, but MCP1 was also highly sensitive and specific. The alterations in KC suggested that it may differentiate between cruciate disease and other types of OA, and the MMPs were most sensitive and specific in the serum. This study provided additional insight to the participation of cytokines, chemokines, and MMPs in OA, and potential diagnostic biomarker candidates were identified. A brief literature review of other biomarker candidates previously examined using animal models is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0031-1297361DOI Listing

Publication Analysis

Top Keywords

animal models
12
synovial fluid
8
sensitive specific
8
biomarker candidates
8
models osteoarthritis
4
biomarker
4
osteoarthritis biomarker
4
biomarker osteoarthritis
4
osteoarthritis disease
4
disease commonly
4

Similar Publications

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

From circuits to lifespan: translating mouse and human timelines with neuroimaging based tractography.

J Neurosci

January 2025

Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.

Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging.

View Article and Find Full Text PDF

Mouse models for understanding physiological functions of ADARs.

Methods Enzymol

January 2025

St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia. Electronic address:

Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!