[Simulation of cropland soil moisture based on an ensemble Kalman filter].

Ying Yong Sheng Tai Xue Bao

School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China.

Published: November 2011

By using an ensemble Kalman filter (EnKF) to assimilate the observed soil moisture data, the modified boreal ecosystem productivity simulator (BEPS) model was adopted to simulate the dynamics of soil moisture in winter wheat root zones at Xuzhou Agro-meteorological Station, Jiangsu Province of China during the growth seasons in 2000-2004. After the assimilation of observed data, the determination coefficient, root mean square error, and average absolute error of simulated soil moisture were in the ranges of 0.626-0.943, 0.018-0.042, and 0.021-0.041, respectively, with the simulation precision improved significantly, as compared with that before assimilation, indicating the applicability of data assimilation in improving the simulation of soil moisture. The experimental results at single point showed that the errors in the forcing data and observations and the frequency and soil depth of the assimilation of observed data all had obvious effects on the simulated soil moisture.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil moisture
24
ensemble kalman
8
assimilation observed
8
observed data
8
simulated soil
8
soil
7
moisture
6
data
5
[simulation cropland
4
cropland soil
4

Similar Publications

Analytical expressions of specific yield for shallow groundwater estimation and modeling.

Environ Monit Assess

January 2025

Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing, People's Republic of China.

Specific yield (S) is an essential hydrogeological parameter in groundwater-related modeling and estimation. In this study, we proposed several new analytical expressions of S to characterize the nonlinear variations of S under shallow groundwater environments, encompassing S for three-layered soil, transition zone S, and flux-dependent S (in Boussinesq-type equation). The proposed S expression for three-layered soils expanded the applicability of previous expressions for homogeneous soil.

View Article and Find Full Text PDF

Drought impacts trees in varied temporal and spatial patterns, suggesting that heterogeneity of below-ground water stores influences the fate of trees under water stress. Karst ecosystems rely on shallow soil overlying bedrock that can store available water in primary pores. A contribution of rock moisture to tree water status has been previously demonstrated, but actual mechanisms and rates of rock-to-root water delivery remain unknown.

View Article and Find Full Text PDF

The electrochemical properties of chars have been recently described, positioning chars as active participants in microbial redox processes through functional groups, aromatic structures, redox-active metals, and radicals. While bench-scale studies have advanced mechanistic understanding of char's behavior and potential effects, translating these findings to complex ecosystems remains challenging. This is mainly due to the complexities of microbial communities and the unique properties of various ecosystems.

View Article and Find Full Text PDF

Calibration and Performance Evaluation of Cost-Effective Capacitive Moisture Sensor in Slope Model Experiments.

Sensors (Basel)

December 2024

Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan.

Understanding the factors that contribute to slope failures, such as soil saturation, is essential for mitigating rainfall-induced landslides. Cost-effective capacitive soil moisture sensors have the potential to be widely implemented across multiple sites for landslide early warning systems. However, these sensors need to be calibrated for specific applications to ensure high accuracy in readings.

View Article and Find Full Text PDF

Weather and soil water dictate farm operations such as irrigation scheduling. Low-cost and open-source agricultural monitoring stations are an emerging alternative to commercially available monitoring stations because they are often built from components using open-source, do-it-yourself (DIY) platforms and technologies. For irrigation management in an experimental vineyard located in Quiroga (Lugo, Spain), we faced the challenge of installing a low-cost environmental and soil parameter monitoring station composed of several nodes measuring air temperature and relative humidity, soil temperature, soil matric potential, and soil water content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!