[Effects of drought stress and re-watering on the active oxygen scavenging system of Cupressus funebris seedlings in Karst area].

Ying Yong Sheng Tai Xue Bao

Ministry of Education Key Laboratory of Eco-environment in Three Gorges Reservoir Region, Southwest China University, Chongqing 400715, China.

Published: November 2011

This paper studied the active oxygen scavenging system of Cupressus funebris seedlings under drought condition and the recovery capability of the system after re-watering, aimed to understand the adaptation mechanisms of C. funebris to the 'drought and re-watering' environment in Karst area. With the increasing time of drought stress, the seedling's relative water content (RWC) decreased, soluble protein concentration increased first and decreased then, and malondialdehyde (MDA) content increased consistently. The MDA content recovered to the level of the control (CK) when re-watering was implemented within 2 weeks of drought, but could not when the re-watering was made after 4 and 6 weeks of drought. Under drought stress, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased consistently. After rewatering, the SOD activity had somewhat decrease but still remained at a higher level than the CK, and the POD and CAT activities decreased to the CK level when suffered mild stress but had less decrement when suffered severe stress. It was concluded that C. funebris seedlings could resist mild drought stress via increasing their soluble protein concentration and inhibiting membrane lipid peroxidation, but could not resist severe drought stress because of the irreversible damage of their membrane structure.

Download full-text PDF

Source

Publication Analysis

Top Keywords

drought stress
20
funebris seedlings
12
active oxygen
8
oxygen scavenging
8
scavenging system
8
system cupressus
8
cupressus funebris
8
soluble protein
8
protein concentration
8
mda content
8

Similar Publications

Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Influence of drought stress on phosphorus dynamics and maize growth in tropical ecosystems.

BMC Plant Biol

January 2025

Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.

Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.

View Article and Find Full Text PDF

Drought and heat stress significantly limit crop growth and productivity. Their simultaneous occurrence, as often observed in summer crops, leads to larger yield losses. Sorghum is well adapted to dry and hot conditions.

View Article and Find Full Text PDF

Introduction: Children growing up in arid and semi-arid regions of Sub-Saharan Africa (SSA) face heightened risks, often resulting in poor developmental outcomes. In Kenya, the arid and semi-arid lands (ASAL) exhibit the lowest health and developmental indicators among children. Despite these risks, some children grow up successfully and overcome the challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!