microRNAs (miRNAs) have been identified as a fine-tuner in a wide array of biological processes, including development, organogenesis, metabolism, and homeostasis. Deregulation of miRNAs causes diseases, especially cancer. This occurs through a variety of mechanisms, such as genetic alterations, epigenetic regulation, or altered expression of transcription factors, which target miRNAs. Recently, it was discovered that extracellular miRNAs circulate in the blood of both healthy and diseased patients. Since RNase is abundant in the bloodstream, most of the secretory miRNAs are contained in apoptotic bodies, microvesicles, and exosomes or bound to the RNA-binding proteins. However, the secretory mechanism and biological function, as well as the significance of extracellular miRNAs, remain largely unclear. In this article, we summarize the latest and most significant discoveries in recent peer-reviewed research on secretory miRNA involvement in many aspects of physiological and pathological conditions, with a special focus on cancer. In addition, we discuss a new aspect of cancer research that is revealed by the emergence of "secretory miRNA."

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262223PMC
http://dx.doi.org/10.3389/fgene.2011.00097DOI Listing

Publication Analysis

Top Keywords

extracellular mirnas
8
mirnas
6
unraveling mystery
4
cancer
4
mystery cancer
4
secretory
4
cancer secretory
4
secretory microrna
4
microrna horizontal
4
horizontal microrna
4

Similar Publications

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) cells receive several stimuli from surrounding cells, such as B-cell receptor (BCR) stimulation, and can manipulate their microenvironment via extracellular vesicle (EV) release. Here, we investigated the small RNA content (microRNA and YRNA) of CLL-EVs from leukemic cells cultured with/without BCR stimulation. We highlight an increase of miR-155-5p, miR-146a-5p, and miR-132-3p in EVs and in cells after BCR stimulation ( < 0.

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair.

J Mol Med (Berl)

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair.

View Article and Find Full Text PDF

Background: Although most inflammatory bowel disease (IBD) medications are considered safe during pregnancy, their impact on microRNAs (miRNAs) in breast milk is largely unknown. MiRNAs in milk, carried by milk-derived extracellular vesicles (MDEs), are transmitted to the newborn's gut to regulate genes. Aberrant miRNA expression profiles have been found in IBD within tissue, blood, and feces, but data on mother's milk are scarce.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is an important component of the skin's extracellular matrix, and its degradation leads to wrinkles. Hyaluronan-binding protein involved in hyaluronan depolymerization (HYBID) is the main factor responsible for HA degradation in dermis. This study aimed to identify natural plant materials that can effectively suppress HYBID expression and protect HA from degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!