Current software for storing and displaying records of genetic crosses does not provide an easy way to determine the lineage of an individual. The genetic records family tree (GRFT) applet processes records of genetic crosses and allows researchers to quickly visualize lineages using a family tree construct and to access other information from these records using any Internet browser. Users select from three display features: (1) a family tree view which displays a color-coded family tree for an individual, (2) a sequential list of crosses, and (3) a list of crosses matching user-defined search criteria. Each feature contains options to specify the number of records shown and the latter two contain an option to filter results by the owner of the cross. The family tree feature is interactive, displaying a popup box with genetic information when the user mouses over an individual and allowing the user to draw a new tree by clicking on any individual in the current tree. The applet is written in JavaScript and reads genetic records from a tab-delimited text file on the server, so it is cross-platform, can be accessed by anyone with an Internet connection, and supports almost instantaneous generation of new trees and table lists. Researchers can use the tool with their own genetic cross records for any sexually reproducing organism. No additional software is required and with only minor modifications to the script, researchers can add their own custom columns. GRFT's speed, versatility, and low overhead make it an effective and innovative visualization method for genetic records. A sample tool is available at http://stanford.edu/walbot/grft-sample.html.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270322 | PMC |
http://dx.doi.org/10.3389/fgene.2011.00014 | DOI Listing |
Hereditas
January 2025
Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Orthopeadic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
Background: Krabbe disease (KD; globoid cell leucodystrophy) is a rare autosomal recessive lipid storage disorder that affects the white matter of the peripheral and central nervous. Late-onset KD is less frequently diagnosed and often presents with milder symptoms, making accurate diagnosis challenging, especially when distinguishing it from peripheral neuropathy. In this report, we present two cases of late-onset KD in a Chinese family.
View Article and Find Full Text PDFEur J Neurol
February 2025
1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
Background: The p.A53T variant in the SNCA gene was considered, until recently, to be the only SNCA variant causing familial Parkinson's disease (PD) in the Greek population. We identified a novel heterozygous p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!