Mixed hydrotropy: novel science of solubility enhancement.

Indian J Pharm Sci

Shri G. S. Institute of Technology and Science, 23-Park Road, Indore-452 003, Madhya Pradesh, India.

Published: March 2011

Conventional furosemide tablets are practically insoluble in water, have slow onset of action (45-60 min) and poor bioavailability (39-53%), and therefore cannot be given in emergency clinical situations like hypertension or pulmonary edema. So purpose of research was to provide a fast dissolving oral dosage form of furosemide, which can provide quick onset of action by using concept of mixed hydrotropy. Initially solubility of furosemide was determined individually in 4 hydrotropic agents namely urea, sodium acetate, sodium benzoate, sodium citrate at concentration of 10, 20, 30 and 40% w/v solutions using purified water as solvent. Highest solubility was obtained in 40% sodium benzoate solution. Then different combinations of 2, 3 and 4 hydrotropic agents in different ratios were used to determine solubility, so that total concentration of hydrotropic agents was always 40%. Highest solubility was obtained in solution of urea+sodium benzoate+sodium citrate at optimum ratio of 15:20:5. This optimized combination was utilized in preparing solid dispersions by common solvent technique using distilled water as solvent. Solid dispersions were evaluated for flow properties, XRD, DSC, SEM and were also compressed to form tablets. Dissolution studies of conventional and prepared tablets were done using USP Type II apparatus. It was concluded that the concept of mixed hydrotropic solid dispersion is novel, safe and cost-effective technique for enhancing bioavailability of poorly water-soluble drugs by dissolving drug in nonionized form. The magical enhancement in solubility of furosemide is clear indication of its potential to be used in future for other poorly water-soluble drugs in which low bioavailability is major concern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267302PMC
http://dx.doi.org/10.4103/0250-474x.91585DOI Listing

Publication Analysis

Top Keywords

hydrotropic agents
12
mixed hydrotropy
8
onset action
8
concept mixed
8
solubility furosemide
8
sodium benzoate
8
water solvent
8
highest solubility
8
solid dispersions
8
water-soluble drugs
8

Similar Publications

Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes.

Nanomicro Lett

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.

View Article and Find Full Text PDF

Development of a pediatric oral solution of ONC201 using nicotinamide to enhance solubility and stability.

Int J Pharm

December 2024

Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France.

Diffuse intrinsic pontine glioma (DIPG) poses a significant treatment challenge in pediatric patients due to its aggressive nature and difficulty in crossing the blood-brain barrier with effective therapies. ONC201 (dordaviprone) shows promises in inducing apoptosis in cancer cells but suffers from poor water solubility and stability issues. Moreover, conventional solubilizing agents acceptable in formulations intended for adult patients are not suitable for pediatric use.

View Article and Find Full Text PDF

Intracellular ATP concentration is a key regulator of bacterial cell fate.

J Bacteriol

December 2024

Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China.

ATP, most widely known as the primary energy source for numerous cellular processes, also exhibits the characteristics of a biological hydrotrope. The viable but nonculturable (VBNC) and persister states are two prevalent dormant phenotypes employed by bacteria to survive challenging environments, both of which are associated with low metabolic activity. Here, we investigate the intracellular ATP concentration of individual VBNC and persister cells using a sensitive ATP biosensor QUEEN-7μ and reveal that both types of cells possess a lower intracellular ATP concentration than culturable and sensitive cells, although there is a certain overlap in the intracellular ATP concentrations between antibiotic-sensitive cells and persisters.

View Article and Find Full Text PDF

Background: In the pharmaceutical sciences, the solubility profile of therapeutic molecules is crucial for identifying and formulating drugs and evaluating their quality across the drug discovery pipeline based on factors like oral bioavailability, metabolic transformation, biodistribution kinetics, and potential toxicological implications. The investigation aims to enhance the solubility parameters of ketoprofen (BCS-II class), which exhibits low solubility and high permeability.

Methods: In this method, hydrotrope blends of aromatic sodium benzoate and electrolyte sodium acetate were employed to enhance the solubility parameter of ketoprofen.

View Article and Find Full Text PDF

High solubility in water and physiological fluids is an indispensable requirement for the pharmacological efficacy of an active pharmaceutical ingredient. Indeed, it is well established that pharmaceutical substances exhibiting limited solubility in water are inclined towards diminished and inconsistent absorption following oral administration, consequently resulting in variability in therapeutic outcomes. The current advancements in combinatorial chemistry and pharmaceutical design have facilitated the creation of drug candidates characterized by increased lipophilicity, elevated molecular size, and reduced aqueous solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!