Native cytosol requires ATP to initiate the budding of the pre-chylomicron transport vesicle from intestinal endoplasmic reticulum (ER). When FABP1 alone is used, no ATP is needed. Here, we test the hypothesis that in native cytosol FABP1 is present in a multiprotein complex that prevents FABP1 binding to the ER unless the complex is phosphorylated. We found on chromatography of native intestinal cytosol over a Sephacryl S-100 HR column that FABP1 (14 kDa) eluted in a volume suggesting a 75-kDa protein complex that contained four proteins on an anti-FABP1 antibody pulldown. The FABP1-containing column fractions were chromatographed over an anti-FABP1 antibody adsorption column. Proteins co-eluted from the column were identified as FABP1, Sar1b, Sec13, and small VCP/p97-interactive protein by immunoblot, LC-MS/MS, and MALDI-TOF. The four proteins of the complex had a total mass of 77 kDa and migrated on native PAGE at 75 kDa. When the complex was incubated with intestinal ER, there was no increase in FABP1-ER binding. However, when the complex member Sar1b was phosphorylated by PKCζ and ATP, the complex completely disassembled into its component proteins that migrated at their monomer molecular weight on native PAGE. FABP1, freed from the complex, was now able to bind to intestinal ER and generate the pre-chylomicron transport vesicle (PCTV). No increase in ER binding or PCTV generation was observed in the absence of PKCζ or ATP. We conclude that phosphorylation of Sar1b disrupts the FABP1-containing four-membered 75-kDa protein complex in cytosol enabling it to bind to the ER and generate PCTV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323000PMC
http://dx.doi.org/10.1074/jbc.M111.327247DOI Listing

Publication Analysis

Top Keywords

pre-chylomicron transport
12
transport vesicle
12
complex
10
phosphorylation sar1b
8
multiprotein complex
8
intestinal cytosol
8
cytosol enabling
8
enabling bind
8
endoplasmic reticulum
8
native cytosol
8

Similar Publications

CideB protein is required for the biogenesis of very low density lipoprotein (VLDL) transport vesicle.

J Biol Chem

February 2013

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA.

Nascent very low density lipoprotein (VLDL) exits the endoplasmic reticulum (ER) in a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). Similar to protein transport vesicles (PTVs), VTVs require coat complex II (COPII) proteins for their biogenesis from the ER membranes. Because the size of the VTV is large, we hypothesized that protein(s) in addition to COPII components might be required for VTV biogenesis.

View Article and Find Full Text PDF

Native cytosol requires ATP to initiate the budding of the pre-chylomicron transport vesicle from intestinal endoplasmic reticulum (ER). When FABP1 alone is used, no ATP is needed. Here, we test the hypothesis that in native cytosol FABP1 is present in a multiprotein complex that prevents FABP1 binding to the ER unless the complex is phosphorylated.

View Article and Find Full Text PDF

Gut triglyceride production.

Biochim Biophys Acta

May 2012

Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.

Our knowledge of how the body absorbs triacylglycerols (TAG) from the diet and how this process is regulated has increased at a rapid rate in recent years. Dietary TAG are hydrolyzed in the intestinal lumen to free fatty acids (FFA) and monoacylglycerols (MAG), which are taken up by enterocytes from their apical side, transported to the endoplasmic reticulum (ER) and resynthesized into TAG. TAG are assembled into chylomicrons (CM) in the ER, transported to the Golgi via pre-chylomicron transport vesicles and secreted towards the basolateral side.

View Article and Find Full Text PDF

Use of NBD-cholesterol to identify a minor but NPC1L1-independent cholesterol absorption pathway in mouse intestine.

Am J Physiol Gastrointest Liver Physiol

January 2011

Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237, USA.

The importance of Niemann-Pick C1 Like-1 (NPC1L1) protein in intestinal absorption of dietary sterols, including both cholesterol and phytosterols, is well documented. However, the exact mechanism by which NPC1L1 facilitates cholesterol transport remains controversial. This study administered 22-(N(-7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol) and [(3)H]cholesterol to Npc1l1(+/+) and Npc1l1(-/-) mice to determine whether NPC1L1 facilitates dietary sterol uptake by enterocytes and/or participates in intracellular sterol delivery to the endoplasmic reticulum (ER) for lipoprotein assembly before secretion into plasma circulation.

View Article and Find Full Text PDF

Dietary triacylglycerols are absorbed by enterocytes and packaged in the endoplasmic reticulum (ER) in the intestinal specific lipoprotein, the chylomicron, for export into mesenteric lymph. Chylomicrons exit the ER in an ER-to-Golgi transport vesicle, the pre-chylomicron transport vesicle (PCTV), which is the rate-limiting step in the transit of chylomicrons across the cell. Here, we focus on potential mechanisms of control of the PCTV-budding step from the intestinal ER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!