Diffusion-weighted spectroscopy is a unique tool for exploring the intracellular microenvironment in vivo. In living systems, diffusion may be anisotropic, when biological membranes exhibit particular orientation patterns. In this work, a volume selective diffusion-weighted sequence is proposed, allowing single-shot measurement of the trace of the diffusion tensor, which does not depend on tissue anisotropy. With this sequence, the minimal echo time is only three times the diffusion time. In addition, cross-terms between diffusion gradients and other gradients are cancelled out. An adiabatic version, similar to localization by adiabatic selective refocusing sequence, is then derived, providing partial immunity against cross-terms. Proof of concept is performed ex vivo on chicken skeletal muscle by varying tissue orientation and intra-voxel shim. In vivo performance of the sequence is finally illustrated in a U87 glioblastoma mouse model, allowing the measurement of the trace apparent diffusion coefficient for six metabolites, including J-modulated metabolites. Although measurement performed along three separate orthogonal directions would bring similar accuracy on trace apparent diffusion coefficient under ideal conditions, the method described here should be useful for probing intimate properties of the cells with minimal experimental bias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.24193 | DOI Listing |
J Neurosci
January 2025
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Genetic information is involved in the gradual emergence of cortical areas since the neural tube begins to form, shaping the heterogeneous functions of neural circuits in the human brain. Informed by invasive tract-tracing measurements, the cortex exhibits marked interareal variation in connectivity profiles, revealing the heterogeneity across cortical areas. However, it remains unclear about the organizing principles possibly shared by genetics and cortical wiring to manifest the spatial heterogeneity across cortex.
View Article and Find Full Text PDFComput Med Imaging Graph
December 2024
Nantes Université, Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France.
Diffuse Large B-cell Lymphoma (DLBCL) is a lymphatic cancer of steadily growing incidence. Its diagnostic and follow-up rely on the analysis of clinical biomarkers and 18F-Fluorodeoxyglucose (FDG)-PET/CT images. In this context, we target the problem of assisting in the early identification of high-risk DLBCL patients from both images and tabular clinical data.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
BMJ Open
December 2024
Regional Rehabilitation Unit, Northwick Park Hospital, London, UK.
Objectives: To adapt and apply a model for evaluating the functional benefits and cost efficiency of specialist inpatient rehabilitation to the Australian context, comparing functional outcomes and savings in the cost of ongoing care after acquired brain injury.
Design: An observational cohort analysis of prospectively collected clinical data from admission to discharge, with follow-up to 3 years.
Setting: A newly established state-wide inpatient postacute rehabilitation unit in Victoria, Australia for patients with moderate to severe acquired brain injury.
Acc Chem Res
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!