Low-power upconversion in dye-doped polymer nanoparticles.

Macromol Rapid Commun

Adolphe Merkle Institute and Fribourg Center for Nanomaterials, University of Fribourg, Rte de l'Ancienne Papeterie, P.O. Box 209, 1723 Marly, Switzerland.

Published: April 2012

Examples of nanoscale low-power upconverting systems are rapidly increasing because of their potential application in numerous areas such as bioimaging or drug delivery. The fabrication of dye-doped cross-linked rubbery nanoparticles that exhibit upconversion even at relatively low power densities is reported here. The nanoparticles were prepared by surfactant-free emulsion polymerization of n-butylacrylate with divinylbenzene as a cross-linker, followed by dyeing of the resulting particles with a two-chromophore system composed of a palladium porphyrin sensitizer, and diphenylanthracene. Blue emission (≈440 nm) of these systems was observed upon excitation at 532 nm. In addition to their optical properties, the particles were characterized by electron microscopy and dynamic light scattering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201100708DOI Listing

Publication Analysis

Top Keywords

low-power upconversion
4
upconversion dye-doped
4
dye-doped polymer
4
polymer nanoparticles
4
nanoparticles examples
4
examples nanoscale
4
nanoscale low-power
4
low-power upconverting
4
upconverting systems
4
systems rapidly
4

Similar Publications

The application of upconversion nanomaterials relies heavily on the ability to produce bright upconversion luminescence (UCL) or high upconversion quantum yields (UCQYs) at low power density excitation. Herein, we synthesized silica-coated NaYF:Yb@NaGdF:Tm@NaYF:Tb upconversion nanoparticles (UCNPs) and CsPbI perovskites quantum dots (PeQDs) nanocomposites by the slow hydrolysis of (3-aminopropyl)triethoxysilane. The energy transfer (ET) of Gd→Tb accelerates the five-photon upconversion process of Yb-Tm and the design of the core@shell@shell layer effectively mitigates the energy jumps between Gd ions.

View Article and Find Full Text PDF

Water-Dispersible and Biocompatible Polymer-Based Organic Upconversion Nanoparticles for Transdermal Delivery.

Biomater Res

November 2024

School of Chemical Engineering and Institute for Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea.

Photomedicine, which utilizes light for therapeutic purposes, has several hurdles such as limited tissue penetration for short-wavelength light and inadequate deep tissue efficacy for long-wavelength light. Photon energy upconversion (UC) reveals promise in photomedicine because it enables the conversion of lower-energy photons into higher-energy photon. Lanthanide (Ln)-based inorganic UC system has been extensively studied but faces challenges, including high excitation laser power density, intrinsically subpar UC quantum efficiency, and potential biotoxicity.

View Article and Find Full Text PDF

The construction of triplet-triplet annihilation upconversion (TTA-UC) systems with upconversion (UC) emission efficiency at low power densities is still under continuing exploration. From an environmental point of view, the utilization of purely organic pairs is more beneficial than the involvement of transition-metal complexes. In this context, 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) dyes, which can be found in a wide range of applications, have been previously used as suitable sensitizers in TTA-UC systems.

View Article and Find Full Text PDF

In this article, we present a novel approach for designing a low-power, low-area impulse radio ultra-wideband (IR-UWB) noncoherent receiver capable of achieving a data rate of 100 Mbps. Our proposed receiver demonstrates the ability to demodulate ON-OFF keying pulse streams across the entire lower frequency band defined by the Federal Communication Commission for UWB applications. The key components of the proposed receiver include a reconfigurable differential two-stage low-noise amplifier, a fully differential squarer, narrow-band interface rejection filters, and variable gain baseband amplifiers.

View Article and Find Full Text PDF

Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!