An essential role for p38 MAPK in cerebellar granule neuron precursor proliferation.

Acta Neuropathol

Departments of Neurological Surgery and Cancer Biology, Vanderbilt University, Nashville, TN, 37212, USA; Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.

Published: April 2012

Development of the cerebellum occurs postnatally and is marked by a rapid proliferation of cerebellar granule neuron precursors (CGNPs). CGNPs are the cells of origin for SHH-driven medulloblastoma, the most common malignant brain tumor in children. Here, we investigated the role of ERK, JNK, and p38 mitogen-activated protein kinases in CGNP proliferation. We found high levels of p38α in proliferating CGNPs. Concomitantly, members of the p38 pathway, such as ASK1, MKK3 and ATF-2, were also elevated. Inhibition of the Shh pathway or CGNP proliferation blunts p38α levels, irrespective of Shh treatment. Strikingly, p38α levels were high in vivo in the external granule layer of the postnatal cerebellum, Shh-dependent mouse medulloblastomas and human medulloblastomas of the SHH subtype. Finally, knocking down p38α by short hairpin RNA-carrying lentiviruses as well as the pharmacologically inhibiting of its kinase activity caused a marked decrease in CGNP proliferation, underscoring its requirement for Shh-dependent proliferation in CGNPs. The inhibition of p38α also caused a decrease in Gli1 and N-myc transcript levels, consistent with reduced proliferation. These findings suggest p38 inhibition as a potential way to increase the efficacy of treatments available for malignancies associated with deregulated SHH signaling, such as basal cell carcinoma and medulloblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775951PMC
http://dx.doi.org/10.1007/s00401-012-0946-zDOI Listing

Publication Analysis

Top Keywords

cgnp proliferation
12
cerebellar granule
8
granule neuron
8
p38α levels
8
proliferation
7
p38α
5
essential role
4
p38
4
role p38
4
p38 mapk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!