Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Processable, low-cost, high-performance hybrid dielectrics are enablers for a vast array of green technologies, including high-temperature electrical insulation and pulsed power capacitors for all-electric transportation vehicles. Maximizing the dielectric breakdown field (E(BD)), in conjunction with minimization of leakage current, directly impacts system performance because of the field's quadratic relationship with electrostatic energy storage density. On the basis of the extreme internal interfacial area and ultrafine morphology, polymer-inorganic nanocomposites (PNCs) have demonstrated modest increases in E(BD) at very low inorganic loadings, but because of insufficient control of the hierarchal morphology of the blend, have yielded a precipitous decline in E(BD) at intermediate and high inorganic volume fractions. Here in, we demonstrate that E(BD) can be increased up to these intermediate inorganic volume fractions by creating uniform one-dimensional nanocomposites (nanolaminates) rather than blends of spherical inorganic nanoparticles and polymers. Free standing nanolaminates of highly aligned and dispersed montmorillonite in polyvinyl butyral exhibited enhancements in E(BD) up to 30 vol % inorganic (70 wt % organically modified montmorillonite). These relative enhancements extend up to five times the inorganic fraction observed for random nanoparticle dispersions, and are anywhere from two to four times greater than observed at comparable volume fraction of nanoparticles. The breakdown characteristics of this model system suggested a trade-off between increased path tortuosity and polymer-deficient structural defects. This implies that an idealized PNC morphology to retard the breakdown cascade perpendicular to the electrodes will occur at intermediate volume fractions and resemble a discotic nematic phase where highly aligned, high-aspect ratio nanometer thick plates are uniformly surrounded by nanoscopic regions of polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am201650g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!