Septic syndromes are the main cause of death in the intensive care units and although the mortality rates is slowly decreasing, the occurrence of the disease has been increasing. The pathogenesis of sepsis includes countless disturbances of the host immune system starting with a harmful, infection-triggered exaggerated inflammatory cascade, followed by the development of an immunoparalysis state. The latter contributes to the failure in pathogen eradication and leads to secondary infections, which are often the cause of fatal complications. In this review, we consider different novel therapeutic strategies for restoration of immune function. The use of glucocorticoids, intravenous immunoglobulins, heparin, recombinant human activated protein C, granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor, interferon-γ, statins, macrolides and high-volume hemofiltration are discussed. Even though some clinical trials of these regimens are promising, the key to their successful application seems to be the precise monitoring of the status of immune system followed by implementation of the adequate therapy. Thus, in this paper we present disturbances in the immune system in the course of human sepsis, with special attention to the parameters that could be monitored and serve as markers for immunomodulatory therapies. We conclude by briefly presenting the current sepsis treatment strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00005-012-0166-1 | DOI Listing |
Curr Neuropharmacol
January 2025
Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Mahesana, Gujarat, 384012, India.
Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Laboratory of Angiopathology Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, 125315, Moscow, Russia.
This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston. (B.C.-C., N.A.V.G., N.L.P., L.P.E., V.S.K.S., A.M.O., J.L., G.M., O.H., A.D., S.W.Y., C.A.I., K.C.O.M., S. Kotla, J.-i.A.).
Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
Recent advances in molecular science have significantly enlightened our mechanistic understanding of spinocerebellar ataxia type 7. To further close remaining gaps, we performed a multi-omics analysis using SCA7 mice. Entire brain tissue samples were collected from 12-week-old mice, and RNA sequencing, methylation analysis, and proteomic analysis were performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!