Generation of induced pluripotent stem (iPS) cells from somatic cells of patients represents a powerful tool for disease modeling, and they may have a wide range of applications in cell therapies. Olivopontocerebellar atrophy (OPCA) is a rare and debilitating neurologic disease of insidious onset, characterized by atrophy of the cerebellum pons and inferior olivary nuclei with concomitant ambulation deficits and dyscoordination. Here, we report the generation of iPS cells from skin fibroblasts of a 56-year-old female patient with familial OPCA. OPCA is classified in the autosomal dominant ataxia that is also named spinocerebellar ataxia (SCA) 7. The disease allele of SCA7 gene of the patient contains 45 CAG trinucleotide repeats, the number of which is larger than the normal repeat number (4 to 36 CAG repeats). The OPCA-iPS cells were generated via ectopic expression of four transcription factors: OCT4, SOX2, KLF4 and c-MYC. The OPCA-iPS cells expressed the pluripotency markers, and they can be differentiated into various somatic cell types in vitro and in vivo. Furthermore, the iPS cells also can be committed to differentiate into neural cells. Therefore, the OPCA-iPS cells offer an unprecedented cell model to investigate disease mechanisms, discover novel drugs, and develop new therapies for OPCA.

Download full-text PDF

Source
http://dx.doi.org/10.1620/tjem.226.151DOI Listing

Publication Analysis

Top Keywords

ips cells
12
opca-ips cells
12
cells
9
generation induced
8
induced pluripotent
8
pluripotent stem
8
cells skin
8
skin fibroblasts
8
olivopontocerebellar atrophy
8
stem cells
4

Similar Publications

Background: The Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) is a public-private partnership linking NIH, the FDA, pharmaceutical companies, and nonprofit organizations in an interactive, collaborative program utilizing transcriptomics, genomics, metagenomics, proteomics, and metabolomics to provide data for computational analysis, that, in turn, enables promising targets to be ranked by a combination of omic scores and druggability. This ranking informs the selection of targets for validation.

Method: Human postmortem samples were obtained from Mount Sinai, ROSMAP (Religious Orders Study and Rush Memory and Aging Project), Mayo Clinic (Florida), and Columbia University.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Tauopathies are a group of neurodegenerative disorders which are characterized by the accumulation of abnormal tau protein in the brain. However, the mechanistic understanding of pathogenic tau formation and spread within the brain remains elusive. Astrocytes are major immune reactive cells in the brain and have been implicated in exacerbating tau pathology by releasing extracellular vesicles (AEVs) containing pro-inflammatory cytokines and chemokines upon activation.

View Article and Find Full Text PDF

Background: The molecular etiology of tau-derived neurodegeneration remains poorly understood, reflected in the low success rate of clinical trials. Hence, aquiring a better understanding the molecular basis of tauopathies is a critical need.

Objective: To develop a versatile and reproducible system to study tau aggregation with high spatiotemporal control through optogenetics that will aid in investigating the differences in tau aggregation kinetics, the burden the burden of tau isoforms, and mutations and that will be suitable for high-throughput analysis of tauopathy-related mechanisms.

View Article and Find Full Text PDF

Background: SNX19 is a key player in endolysosomal and autophagy pathways, which have been extensively reported in neuronal dysfunction and neurodegenerative diseases. Although genetic and cellular evidence suggests SNX19 contributes to neuropathology, the underlying mechanisms remain unknown. Here, we propose to study the mechanism in aging postmortem brain tissue at single cell level and model SNX19 in human induced pluripotent stem cell (hiPSCs) derived brain organoids.

View Article and Find Full Text PDF

Background: The locus coeruleus (LC), is the first brain region to develop hyperphosphorylated tau (ptau) inclusions in Alzheimer's disease (AD) and undergoes catastrophic degeneration in later stages of the disease. Importantly, the LC is the main noradrenergic nucleus in the brain and source of NE in the forebrain, and dysregulation of the neurotransmitter norepinephrine (NE) is associated with AD symptoms, as its release in the forebrain regulates attention, arousal, stress response, and learning and memory. Moreover, the LC may transmit pathogenic tau to the forebrain via its extensive projections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!