Sodium-glucose cotransporters (SGLTs) are secondary active transporters belonging to the SLC5 gene family. SGLT1, a well-characterized member of this family, electrogenically transports glucose and galactose. Human SGLT3 (hSGLT3), despite sharing a high amino acid identity with human SGLT1 (hSGLT1), does not transport sugar, although functions as a sugar sensor. In contrast to humans, two different genes in mice and rats code for two different SGLT3 proteins, SGLT3a and SGLT3b. We previously cloned and characterized mouse SGLT3b (mSGLT3b) and showed that, while it does transport sugar like SGLT1, it likely functions as a physiological sugar sensor like hSGLT3. In this study, we cloned mouse SGLT3a (mSGLT3a) and characterized it by expressing it in Xenopus laevis oocytes and performing electrophysiology and sugar transport assays. mSGLT3a did not transport sugar, and sugars did not induce currents at pH 7.4, though acidic pH induced inward currents that increased in the presence of sugar. Moreover, mutation of residue 457 from glutamate to glutamine resulted in a Na(+)-dependent transport of sugar that was inhibited by phlorizin. To corroborate our results in oocytes, we expressed and characterized mSGLT3a in mammalian cells and confirmed our findings. In addition, we cloned, expressed, and characterized rat SGLT3a in oocytes and found characteristics similar to mSGLT3a. In summary, acidic pH induces currents in mSGLT3a, and sugar-induced currents are increased at acidic pH, but wild-type SGLT3a does not transport sugar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00436.2011 | DOI Listing |
AAPS J
January 2025
Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089-0372, USA.
Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!