Background And Purpose: DTI in the brain has been well established, but its application in the spinal cord, especially in pediatrics, poses several challenges. The small cord size has inherent low SNR of the diffusion signal intensity, respiratory and cardiac movements induce artifacts, and EPI sequences used for obtaining diffusion indices cause eddy-current distortions. The purpose of this study was to 1) evaluate the accuracy of cervical spinal cord DTI in children using a newly developed iFOV sequence with spatially selective 2D-RF excitations, and 2) examine reproducibility of the DTI measures.
Materials And Methods: Twenty-five typically developing subjects were imaged twice using a 3T scanner. Axial DTI images of the cervical spinal cord were acquired with this sequence. After motion correction, DTI indices were calculated using regions of interest manually drawn at every axial section location along the cervical spinal cord for both acquisitions. Various DTI indices were calculated: FA, AD, RD, MD, RA, and VR. Geometric diffusion measures were also calculated: Cp, Cl, and Cs.
Results: The following average values for each index were obtained: FA = 0.50 ± 0.11; AD = 0.97 ± 0.20 × 10(-3)mm(2)/s; RD = 0.41 ± 0.13 × 10(-3)mm(2)/s; MD = 0.59 ± 0.15 × 10(-3)mm(2)/s; RA = 0.35 ± 0.08; VR = 0.03 ± 0.00; Cp = 0.13 ± 0.07; Cl = 0.29 ± 0.09; and Cs = 0.58 ± 0.11. The reproducibility tests showed moderate to strong ICC in all subjects for all DTI parameters (ICC>0.72).
Conclusions: This study showed that accurate and reproducible DTI parameters can be estimated in the pediatric cervical spinal cord using an iFOV EPI sequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8013244 | PMC |
http://dx.doi.org/10.3174/ajnr.A2924 | DOI Listing |
ACS Nano
January 2025
Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
Spinal cord injury (SCI) remains a formidable challenge in biomedical research, as the silencing of intrinsic regenerative signals in most spinal neurons results in an inability to reestablish neural circuits. In this study, we found that neurons with low axonal regeneration after SCI showed decreased extracellular signal-regulated kinase (ERK) phosphorylation levels. However, the expression of dual specificity phosphatase 26 (DUSP26)─which negatively regulates ERK phosphorylation─was reduced considerably in neurons undergoing spontaneous axonal regeneration.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2025
University College Hospital London, London, UK.
Background: Transanal irrigation is a well-established minimally invasive therapy that addresses symptoms of both constipation and incontinence. The therapy has been extended from just neurogenic bowel dysfunction patients to those with disorders of brain-gut interaction and postsurgical conditions.
Aim: To summarized the literature on transanal irrigation and update the contraindication profile.
Orthop Surg
January 2025
Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.
Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Pride Veterinary Referrals, IVC Evidensia Group, Derby, United Kingdom.
Holocord syringomyelia (HSM) is characterized by a continuous spinal cord cavitation along its entire length and is currently poorly documented in dogs. This retrospective multicentric case series investigates the clinical and MRI findings in 18 dogs with HSM. The median age at presentation was 82 months (range 9-108 months) and French Bulldogs were overrepresented (50%).
View Article and Find Full Text PDFTrauma Surg Acute Care Open
January 2025
Department of Emergency and Critical Care Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 1138603, Japan.
Background: Patients with cervical spinal cord injuries (CSCIs) have a high incidence of respiratory complications. The effectiveness of non-invasive positive pressure ventilation (NPPV) in preventing respiratory complications such as pneumonia in acute CSCIs remains unclear. We evaluated whether intermittent NPPV (iNPPV) could prevent pneumonia in patients with acute CSCIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!