Self-assembled, nanostructured polypyrrole films grown in a high-gravity environment.

Langmuir

BioInstrumentation Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States.

Published: March 2012

AI Article Synopsis

  • A novel method has been created for making self-assembled conducting polymer films by applying increased centrifugal force during the electrochemical deposition process.
  • Scanning electron microscopy demonstrated that higher g-forces led to a progression in polymer surface morphology from smooth to dense nanostructures with pores as small as 50 nm.
  • Films produced under greater centrifugal acceleration (above 500g) showed improved durability and enhanced capacitive properties after electrochemical cycling.

Article Abstract

A simple, novel method of synthesizing self-assembled, nanostructured conducting polymer films has been developed. Applying an increased centrifugal force on the electrodes during the electrochemical deposition process yields high surface area, micro- or nanostructured polymer films. Scanning electron microscopy showed that as the applied g-force increased, the polymers progressed from having smooth, "cauliflower" morphologies, to intermediate microstructured surfaces, to finally dense nanostructured surfaces with pore sizes as small as 50 nm. Cyclic voltammetry revealed that films grown at higher centrifugal accelerations (higher than 500g) exhibited less degradation after electrochemical cycling and more capacitive behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la204605mDOI Listing

Publication Analysis

Top Keywords

self-assembled nanostructured
8
films grown
8
polymer films
8
nanostructured polypyrrole
4
films
4
polypyrrole films
4
grown high-gravity
4
high-gravity environment
4
environment simple
4
simple novel
4

Similar Publications

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Thermosensitive Porcine Myocardial Extracellular Matrix Hydrogel Coupled with Proanthocyanidins for Cardiac Tissue Engineering.

Gels

January 2025

Laboratory of Immunotherapy and Tissue Engineering, Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Copilco Universidad, Coyoacán, Ciudad de México 04510, Mexico.

Currently, there are no therapies that prevent the negative myocardial remodeling process that occurs after a heart attack. Injectable hydrogels are a treatment option because they may replace the damaged extracellular matrix and, in addition, can be administered minimally invasively. Reactive oxygen species generated by ischemia-reperfusion damage can limit the therapeutic efficacy of injectable hydrogels.

View Article and Find Full Text PDF

Sensing light's polarization and wavefront direction enables surface curvature assessment, material identification, shadow differentiation, and improved image quality in turbid environments. Traditional polarization cameras utilize multiple sensor measurements per pixel and polarization-filtering optics, which result in reduced image resolution. We propose a nanophotonic pipeline that enables compressive sensing and reduces the sampling requirements with a low-refractive-index, self-assembled optical encoder.

View Article and Find Full Text PDF

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

Opportunities in Bottlebrush Block Copolymers for Advanced Materials.

ACS Nano

January 2025

Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.

Bottlebrush block copolymers (BBCPs) are a unique class of materials that contain a backbone with densely grafted and chemically distinct polymeric side chains. The nonlinear architecture of BBCPs provides numerous degrees of freedom in their preparation, including control over key parameters such as grafting density, side chain length, block arrangement, and overall molecular weight. This uniquely branched structure provides BBCPs with several important distinctions from their linear counterparts, including sterically induced side chain and backbone conformations, rapid and large self-assembled nanostructures, and reduced or eliminated entanglement effects (assuming sufficient grafting density and that the molecular weight of the side chains is below their respective entanglement molecular weight).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!