Context: Injectable implants are biodegradable, syringeable formulations that are injected as liquids, but form a gel inside the body due to a change in pH, ions or temperature.

Objective: To investigate the effect of polymer concentration, pH, ions and temperature on the gel formation of β-glucan, a natural cell-wall polysaccharide derived from barley, with particular emphasis on two-phase system formation after addition of dextran or PEG.

Materials And Methods: Oscillation viscometry was used to evaluate the gel character by measuring flow index (N), storage (G') and loss (G") moduli. Two-phase systems were further characterized for hardness and syringeability using a texture analyzer. Finally, in vitro release characteristics were determined using Franz diffusion cells.

Results: Oscillation viscometry revealed that only addition of dextran or PEG resulted in distinct gel formation. This was seen by a decrease in N after polymer addition. Moreover, hardness (in g) of the gels increased significantly (p < 0.001) from 3.65 ± 0.43 to 34.30 ± 8.90 (dextran) and 805.80 ± 5.30 (PEG) 24 h after polymer addition. In vitro release profiles showed significantly (p < 0.05) reduced AUC(0-8 h), k and percentage of drug released from two-phase systems compared to β-glucan dispersions, with the PEG system resulting in the lowest amount released over 8 h (15.1 ± 1.6%).

Discussion: The unfavorable mixing enthalpy and higher water affinity of PEG resulted in the formation of a dense β-glucan gel.

Conclusion: 1.5% (w/w) β-glucan combined with PEG at a ratio of 1:3 seemed to be the most promising injectable formulation with respect to fastest gel formation, increased hardness and sustained release.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03639045.2011.650646DOI Listing

Publication Analysis

Top Keywords

gel formation
12
injectable implants
8
addition dextran
8
oscillation viscometry
8
two-phase systems
8
vitro release
8
polymer addition
8
β-glucan
5
gel
5
formation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!