Two-dimensional π-systems are of current interest in the design of functional organic molecules, exhibiting unique behavior for applications in organic electronics, single-molecule devices, and sensing. Here we describe the synthesis and characterization of "push-pull macrocycles": electron-rich and electron-poor moieties linked by a pair of (matched) conjugated bridges. We have developed a two-component macrocyclization strategy that allows these structures to be synthesized with efficiencies comparable to acyclic donor-bridge-acceptor systems. Compounds with both cross-conjugated (m-phenylene) and linearly conjugated (2,5-thiophene) bridges have been prepared. As expected, the compounds undergo excitation to locally excited states followed by fluorescence from charge-transfer states. The m-phenylene-based systems exhibit slower charge-recombination rates presumably due to reduced electronic coupling through the cross-conjugated bridges. Interestingly, pairing the linearly conjugated 2,5-thiophene bridges also slows charge recombination. DFT calculations of frontier molecular orbitals show that the direct HOMO-LUMO transition is polarized orthogonal to the axis of charge transfer for these symmetrical macrocyclic architectures, reducing the electronic coupling. We believe the push-pull macrocycle design may be useful in engineering functional frontier molecular orbital symmetries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo2026004 | DOI Listing |
Bioelectrochemistry
December 2024
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:
Accurate quantification of specific biomarkers is essential for clinical diagnosis and evaluating therapeutic efficacy. A self-signal-amplifying poly(acrylic acid) (PAA)/polyaniline (PANI) film-modified disposable and cost-effective screen-printed carbon electrode (SPCE) has been developed for constructing new label-free immunosensors targeting two model biomarkers: human immunoglobulin G (IgG) and alpha-fetoprotein (AFP). The electrochemically deposited PAA/PANI film on the SPCE serves a dual function: both a bio-immobilization support and a signal amplifier, enhancing biomarker detection sensitivity and efficiency.
View Article and Find Full Text PDFMolecules
November 2024
The Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/M.A. Capmany 69, 17003 Girona, Spain.
Poly-CPDTBT, as typical low-band gap copolymers, have potential applications in organic bulk heterojunction solar cells. To have a clear picture of its excited-state processes, the first task is to understand their excited states, in particular, electronic character and relevant optical absorption. Herein, the low-lying singlet excited states of Poly-CPDTBT oligomers were investigated via Algebraic Diagrammatic Construction Second Order (ADC(2)) and time-dependent density functional theory (TDDFT) method with several functionals.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany; Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany. Electronic address:
The construction of ultrathin membranes from linearly aligned π-electron systems is advantageous for targeted energy, charge, or mass transfer. The Langmuir-Blodgett (LB) technique enables the creation of such membranes, especially with amphiphilic π-electron systems. However, these systems often aggregate, forming rigid Langmuir monolayers with defects or holes.
View Article and Find Full Text PDFFood Chem
February 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Wuxi 214122, China. Electronic address:
Detecting Aflatoxin M1 (AFM1) in food products is crucial due to its high toxicity and health risks. This study introduced a fluorescence donor material using Rhodamine-B-Isothiocyanate (RBITC)-doped silica nanoparticles (RDSN) combined with iron oxide‑gold nanostars (IOGNS) as a quencher. The composite aptasensor (RDSN/IOGNS) served as a Förster Resonance Energy Transfer (FRET) nanoprobe for sensitive and selective AFM1 detection.
View Article and Find Full Text PDFFront Chem
October 2024
Instituto Universitario de Síntesis Orgánica and Departamento de Química Orgánica, Campus de San Vicente del Raspeig, Universidad de Alicante, Alicante, Spain.
The conductance of a tunneling electron through a π-conjugated molecule may be affected by the presence of different pathways in the orbital structure of the molecule, resulting in the constructive or destructive interference of the molecular wave function. This quantum interference (QI) directly translates into enhancement or suppression of conductance and offers the possibility of controlling this phenomenon through tailored synthesis. Hence, we set up synthetic methodologies to access a series of thiophene-fused helicenes with a well-defined positioning of the sulfur atoms, which control the occurrence of conducting, linearly conjugated as well as disrupted, cross-conjugated pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!