Spectroscopic reflectometry of mirror surfaces during plasma exposure.

Rev Sci Instrum

Department of Physics, University of Basel, Basel, Switzerland.

Published: January 2012

An in situ spectroscopic reflectometry system has been built to investigate the evolution of the specular reflectivity spectrum of ITER first mirror samples during plasma exposure. Results are presented for three different types of molybdenum mirror samples that were exposed to deuterium plasma, including single crystalline, nanocrystalline, and polycrystalline molybdenum. The results show good agreement with ex situ measurements of the reflectivity spectrum before and after exposure and extend the results obtained in previous experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3678640DOI Listing

Publication Analysis

Top Keywords

spectroscopic reflectometry
8
plasma exposure
8
reflectivity spectrum
8
mirror samples
8
reflectometry mirror
4
mirror surfaces
4
surfaces plasma
4
exposure situ
4
situ spectroscopic
4
reflectometry system
4

Similar Publications

Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly.

View Article and Find Full Text PDF

Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems.

Adv Colloid Interface Sci

March 2024

Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark. Electronic address:

The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems.

View Article and Find Full Text PDF

Electro-responsive metallopolymers can possess highly specific and tunable ion interactions, and have been explored extensively as electrode materials for ion-selective separations. However, there remains a limited understanding of the role of solvation and polymer-solvent interactions in ion binding and selectivity. The elucidation of ion-solvent-polymer interactions, in combination with the rational design of tailored copolymers, can lead to new pathways for modulating ion selectivity and morphology.

View Article and Find Full Text PDF

Pertinent to cryopreservation as well as energy storage and batteries, nonaqueous electrolytes and their mixtures with water were investigated. In particular, specific ion-induced effects on the modulation of a poly(-isopropylacrylamide) (PNIPAM) brush were investigated in various dimethyl sulfoxide (DMSO)-water solvent mixtures. Spectroscopic ellipsometry and neutron reflectometry were employed to probe changes in brush swelling and structure, respectively.

View Article and Find Full Text PDF

Hypothesis: Understanding the complex interactions between polymers and surfactants is required to optimise commercially relevant systems such as paint, toothpaste and detergent. Neutral polymers complex with surfactants, forming 'pearl necklace' structures that are often conceptualised as pseudo-polyelectrolytes. Here we pose two questions to test the limits of this analogy: Firstly, in the presence of salt, do these polymer-surfactant systems behave like polyelectrolytes? Secondly, do polymer-surfactant complexes resist geometric confinement like polyelectrolytes?

Experiments: We test the limits of the pseudo-polyelectrolyte analogy through studying a poly(N-isopropylacrylamide) (PNIPAM) brush in the presence of sodium dodecylsulfate (SDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!