The separation of ultraviolet photoelectron spectroscopy (UPS) and metastable impact electron spectroscopy (MIES) is usually performed by a time-of-flight (ToF) separation using pre-set ToF for both types of signal. In this work, we present a new, improved ex situ signal separation method for the separation of MIES and UPS for every single measurement. Signal separation issues due to changes of system parameters can be overcome by changing the ToF separation and therefore allowing for the application of a wider range of measuring conditions. The method also enables to identify and achieve separation of the two signals without any time consuming calibration and the use of any special material for the calibration. Furthermore, changes made to the discharge source are described that enable to operate an existing MIES/UPS source over a broader range of conditions. This allows for tuning of the yield of UV photons and metastable rare gas atoms leading to an improved signal to noise ratio. First results of this improved setup are well in agreement with spectra reported in literature and show increased resolution and higher signal intensities for both MIE and UP spectra compared to the previous, non-optimized setup.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3677648DOI Listing

Publication Analysis

Top Keywords

metastable impact
8
impact electron
8
electron spectroscopy
8
ultraviolet photoelectron
8
photoelectron spectroscopy
8
separation
8
tof separation
8
signal separation
8
signal
5
improving metastable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!