Discovering biological diversity is a fundamental goal--made urgent by the alarmingly high rate of extinction. We have compiled information from more than 100,000 type specimens to quantify the role of collectors in the discovery of plant diversity. Our results show that more than half of all type specimens were collected by less than 2 per cent of collectors. This highly skewed pattern has persisted through time. We demonstrate that a number of attributes are associated with prolific plant collectors: a long career with increasing productivity and experience in several countries and plant families. These results imply that funding a small number of expert plant collectors in the right geographical locations should be an important element in any effective strategy to find undiscovered plant species and complete the inventory of the world flora.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321708PMC
http://dx.doi.org/10.1098/rspb.2011.2439DOI Listing

Publication Analysis

Top Keywords

discovery plant
8
plant species
8
type specimens
8
plant collectors
8
plant
6
collectors
5
big hitting
4
hitting collectors
4
collectors massive
4
massive disproportionate
4

Similar Publications

From "traditional" to modern medicine: A medical and historical analysis of L. (Cempasúchil).

J Tradit Complement Med

January 2025

Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.

The medicinal value of herbal products is often rooted in their "traditional" use, recontextualized by modern biomedical research granting them certain medical uses. L. (Asteraceae), native to Mexico, exemplifies such historical developments of a species that played a key role in developing a major pharmacologically active compound - lutein.

View Article and Find Full Text PDF

The C type of dicotyledonous plants exhibit a higher density of reticulate veins than the C type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F.

View Article and Find Full Text PDF

The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.

View Article and Find Full Text PDF

The importance of conserving plant genetic diversity has been recognised since the 1980's, but genetic research tools for improving conservation remain largely absent from standard planning. Using an Australian case study framework of the New South Wales Government's Saving our Species program, we outline the costs and benefits associated with conducting genomic analysis within a conservation strategy to inform for example, taxonomic resolution, targeted monitoring, translocations and ex situ collections. Despite a reported sentiment that costs are prohibitive, our study identified that where genetics reports have been provided (32 to date), the cost of genetic sampling, analysis and advice is less than 10% of the total Government investment (SoS program) and will continue decreasing proportionally throughout the years as other management occurs.

View Article and Find Full Text PDF

Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing HO.

Cell Res

January 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.

Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!