The joint consequences of inbreeding, natural selection, and deleterious mutation on mean fitness after population shrinkage are of great importance in evolution and can be critical to the conservation of endangered populations. I present simple analytical equations that predict these consequences, improving and extending a previous heuristic treatment. Purge is defined as the "extra" selection induced by inbreeding, due to the "extra" fitness disadvantage (2d) of homozygotes for (partially) recessive deleterious alleles. Its effect is accounted for by using, instead of the classical inbreeding coefficient f, a purged inbreeding coefficient g that is weighed by the reduction of the frequency of deleterious alleles caused by purging. When the effective size of a large population is reduced to a smaller stable value N (with Nd ≥ 1), the purged inbreeding coefficient after t generations can be predicted as g(t) ≈ [(1 - 1/2N) g(t)(-1) + 1/2N](1 - 2d f(t)(-1)), showing how purging acts upon previously accumulated inbreeding and how its efficiency increases with N. This implies an early fitness decay, followed by some recovery. During this process, the inbreeding depression rate shifts from its ancestral value (δ) to that of the mutation-selection-drift balance corresponding to N (δ*), and standard selection cancels out the inbreeding depression ascribed to δ*. Therefore, purge and inbreeding operate only upon the remaining δ - δ*. The method is applied to the conservation strategy in which family contributions to the breeding pool are equal and is extended to make use of genealogical information. All these predictions are checked using computer simulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316656 | PMC |
http://dx.doi.org/10.1534/genetics.111.135541 | DOI Listing |
Poult Sci
December 2024
Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy. Electronic address:
Basilicata and Apulian (BAS-APU) turkeys, a native population in the Basilicata and Puglia regions of southern Italy, are known for their high meat quality and tolerance to local conditions. Understanding the genomic patterns of BAS-APU turkeys is critical for effective breeding and preservation strategies. In this study, we characterized runs of homozygosity (ROH), and selection signatures using the integrated haplotype score (iHS) and ROH approaches.
View Article and Find Full Text PDFCurr Biol
January 2025
University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada. Electronic address:
Kelp forests are declining in many parts of the northeast Pacific. In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles, but natural selection may purge harmful variants. To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.
View Article and Find Full Text PDFPoult Sci
January 2025
Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China. Electronic address:
Understanding the genomic variation in Pekin duck under artificial selection is important for improving the utilization of duck genetic resources. Here, the genomic changes in Pekin duck were analyzed by using the genome resequencing data from 96 individual samples, including 2 conservation populations and 4 breeding populations with different breeding backgrounds. The population structure, runs of homozygosity (ROH), effective population number (Ne), and other genetic parameters were analyzed.
View Article and Find Full Text PDFGenet Sel Evol
January 2025
GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France.
Background: The magnitude of inbreeding depression depends on the recessive burden of the individual, which can be traced back to the hidden (recessive) inbreeding load among ancestors. However, these ancestors carry different alleles at potentially deleterious loci and therefore there is individual variability of this inbreeding load. Estimation of the additive genetic value for inbreeding load is possible using a decomposition of inbreeding in partial inbreeding components due to ancestors.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
Black-bone silky fowls(Gallus gallus domesticus) have a long history of medicinal use, with the origin in Taihe county, Jiangxi province. The unclear family composition, inbreeding rate, and effective population size were inconducive to the resource conservation or breed improvement of black-bone silky fowls. A genome-wide analysis was performed to evaluate the genetic diversity of 80 black-bone silky fowls from random mating in three farms in 2021 in terms of minor allele frequency(MAF), expected heterozygosity(H_e), observed heterozygosity(H_o), effective population size(N_e), and runs of homozygosity(ROH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!