Glutamate is the primary excitatory neurotransmitter in the central nervous system, where its toxic build-up leads to synaptic dysfunction and excitotoxic cell death that underlies many neurodegenerative diseases. Therefore, efforts have been made to understand the regulation of glutamate transporters, which are responsible for the clearance of extracellular glutamate. We now report that adenosine A(2A) receptors (A(2A) R) control the uptake of D-aspartate in primary cultured astrocytes as well as in an ex vivo preparation enriched in glial plasmalemmal vesicles (gliosomes) from adult rats, whereas A(1) R and A(3) R were devoid of effects. Thus, the acute exposure to the A(2A) R agonist, CGS 21680, inhibited glutamate uptake, an effect prevented by the A(2A) R antagonist, SCH 58261, and abbrogated in cultured astrocytes from A(2A) R knockout mice. Furthermore, the prolonged activation of A(2A) R lead to a cAMP/protein kinase A-dependent reduction of GLT-I and GLAST mRNA and protein levels, which leads to a sustained decrease of glutamate uptake. This dual mechanism of inhibition of glutamate transporters by astrocytic A(2A) R provides a novel candidate mechanism to understand the ability of A(2) (A) R to control synaptic plasticity and neurodegeneration, two conditions tightly associated with the control of extracellular glutamate levels by glutamate transporters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.22290DOI Listing

Publication Analysis

Top Keywords

glutamate uptake
12
cultured astrocytes
12
glutamate transporters
12
glutamate
9
adenosine a2a
8
a2a receptors
8
extracellular glutamate
8
a2a
7
receptors modulate
4
modulate glutamate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!