Phototrophs of the family Heliobacteriaceae contain the simplest known Type I reaction center (RC), consisting of a homodimeric (PshA)(2) core devoid of bound cytochromes and antenna proteins. Unlike plant and cyanobacterial Photosystem I in which the F(A)/F(B) protein, PsaC, is tightly bound to P(700)-F(X) cores, the RCs of Heliobacterium modesticaldum contain two F(A)/F(B) proteins, PshBI and PshBII, which are loosely bound to P(800)-F(X) cores. These two 2[4Fe-4S] ferredoxins have been proposed to function as mobile redox proteins, reducing downstream metabolic partners much in the same manner as does [2Fe-2S] ferredoxin or flavodoxin (Fld) in PS I. Using P(800)-F(X) cores devoid of PshBI and PshBII, we show that iron-sulfur cluster F(X) directly reduces Fld without the involvement of F(A) or F(B) (Fld is used as a proxy for soluble redox proteins even though a gene encoding Fld is not identified in the H. modesticaldum genome). The reduction of Fld is suppressed by the addition of PshBI or PshBII, an effect explained by competition for the electron on F(X). In contrast, P(700)-F(X) cores require the presence of the PsaC, and hence, the F(A)/F(B) clusters for Fld (or ferredoxin) reduction. Thus, in H. modesticaldum, the interpolypeptide F(X) cluster serves as the terminal bound electron acceptor. This finding implies that the homodimeric (PshA)(2) cores should be capable of donating electrons to a wide variety of yet-to-be characterized soluble redox partners.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11120-012-9723-z | DOI Listing |
Biochemistry
April 2016
Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.
The homodimeric type I reaction center in heliobacteria is arguably the simplest known pigment-protein complex capable of conducting (bacterio)chlorophyll-based conversion of light into chemical energy. Despite its structural simplicity, the thermodynamics of the electron transfer cofactors on the acceptor side have not been fully investigated. In this work, we measured the midpoint potential of the terminal [4Fe-4S](2+/1+) cluster (FX) in reaction centers from Heliobacterium modesticaldum.
View Article and Find Full Text PDFPhotosynth Res
March 2012
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
Phototrophs of the family Heliobacteriaceae contain the simplest known Type I reaction center (RC), consisting of a homodimeric (PshA)(2) core devoid of bound cytochromes and antenna proteins. Unlike plant and cyanobacterial Photosystem I in which the F(A)/F(B) protein, PsaC, is tightly bound to P(700)-F(X) cores, the RCs of Heliobacterium modesticaldum contain two F(A)/F(B) proteins, PshBI and PshBII, which are loosely bound to P(800)-F(X) cores. These two 2[4Fe-4S] ferredoxins have been proposed to function as mobile redox proteins, reducing downstream metabolic partners much in the same manner as does [2Fe-2S] ferredoxin or flavodoxin (Fld) in PS I.
View Article and Find Full Text PDFPhotosynth Res
June 2010
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
All known Type I photosynthetic reaction centers harbor three [4Fe-4S] clusters named F(X), F(A) and F(B) that function as terminal electron acceptors. We reported earlier that F(A) and F(B) in the homodimeric Type I reaction center from Heliobacterium modesticaldum reside on a loosely bound 54 amino acid protein named PshB. Time-resolved optical spectroscopy and low temperature EPR spectroscopy showed that on illumination, electrons were transferred from F(X) (-) to F(A) and F(B) at both cryogenic and room temperatures.
View Article and Find Full Text PDFPhotosynth Res
June 2010
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
The hallmark of a Type-I photosynthetic reaction center (RC) is the presence of three [4Fe-4S](2+/1+) clusters, named F(X), F(A), and F(B) that act as terminal electron acceptors. Their function is to increase the distance, and hence the lifetime, of the initial charge-separated state so that diffusion-mediated processes, such as the reduction of ferredoxin, can occur. Type-I homodimeric RCs, such as those found in heliobacteria, green-sulfur bacteria, and Candidatus Chloracidobacterium thermophilum, are less well understood than Photosystem I, the prototypical Type-I heterodimeric RC found in cyanobacteria and plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!