The crystal structure of L-arginine.

Chem Commun (Camb)

School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, UK.

Published: March 2012

We report the crystal structure of L-arginine, one of the last remaining natural amino acids for which the crystal structure has never been determined; structure determination was carried out directly from powder X-ray diffraction (XRD) data, exploiting the direct-space genetic algorithm technique for structure solution followed by Rietveld refinement.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc17203hDOI Listing

Publication Analysis

Top Keywords

crystal structure
12
structure l-arginine
8
l-arginine report
4
report crystal
4
structure
4
l-arginine remaining
4
remaining natural
4
natural amino
4
amino acids
4
acids crystal
4

Similar Publications

Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence.

J Phys Chem Lett

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.

View Article and Find Full Text PDF

Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).

View Article and Find Full Text PDF

Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing AuTe) claimed various chemical compositions for this low-symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal, and electronic characteristics unknown. Here, we investigate the stability, electronic properties, and synthesis of the gold antimony tellurides AuSbTe and AuSbTe (montbrayite).

View Article and Find Full Text PDF

Colloidal crystals of micrometer-sized colloids create prismatic structural colors through the grating diffraction of visible light. Here, we develop design rules to engineer such structural color by specifically accounting for the effect of crystal defects. The local quality and grain size of the colloidal structure are varied by performing self-assembly in the presence of a direct current (DC) electric field.

View Article and Find Full Text PDF

Attention-Based Interpretable Multiscale Graph Neural Network for MOFs.

J Chem Theory Comput

January 2025

The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!