Terahertz bandpass filters using double-stacked metamaterial layers.

Opt Lett

Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, USA.

Published: February 2012

Bandpass filters are reported based on double-stacked metamaterial layers separated by an air gap for operation at terahertz frequencies. Several stacking configurations were investigated designed for a ~0.5 THz center frequency. The filters exhibited improved spectral transmission properties when compared with conventional ones based on single metamaterial layers. 3 dB bandwidth of ~78 GHz and sidelobe suppression ratio >16 dB were determined when symmetric or asymmetric double layers were stacked. We demonstrate that superior frequency selectivity can be achieved when metamaterial layers with different unit cells are used. Good agreement was found between measured and simulated transmission response.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.37.000296DOI Listing

Publication Analysis

Top Keywords

metamaterial layers
16
bandpass filters
8
double-stacked metamaterial
8
layers
5
terahertz bandpass
4
filters double-stacked
4
metamaterial
4
layers bandpass
4
filters reported
4
reported based
4

Similar Publications

This study explores the impact of metallic shells by electroforming method on the mechanical behavior of thermoplastic polyurethane (TPU)-based lattice structures. First, the TPU lattice structures were printed by additive manufacturing technique. Then layers of Ni and Cu as a thin shell were dressed on the TPU lattice structures in the electroforming baths of Ni and Cu solutions.

View Article and Find Full Text PDF

All dielectric metasurface based diffractive neural networks for 1-bit adder.

Nanophotonics

April 2024

Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing, 100048, China.

Diffractive deep neural networks ( ) have brought significant changes in many fields, motivating the development of diverse optical computing components. However, a crucial downside in the optical computing components is employing diffractive optical elements (DOEs) which were fabricated using commercial 3D printers. DOEs simultaneously suffer from the challenges posed by high-order diffraction and low spatial utilization since the size of individual neuron is comparable to the wavelength scale.

View Article and Find Full Text PDF

Past work has considered the analytic properties of the reflection coefficient for a metal-backed slab. The primary result established a fundamental relationship for the minimal layer thickness to bandwidth ratio achievable for an absorber. There has yet to be establishment of a similar relationship for non-metal-backed layers, and here we present the universal result based on the Kramers-Kronig relations.

View Article and Find Full Text PDF

Hybrid plasmonic metamaterials: towards enhanced ultra broadband and wide-angle solar absorption for energy harvesting.

Phys Chem Chem Phys

December 2024

Department of Electrical Engineering, Faculty of Engineering, University of Zabol, 9861335856 Zabol, Iran.

In this paper, we have investigated a hybrid metamaterial seven-layer solar absorber. The absorber has remarkable characteristics, including ultra-broadband perfect absorption capability, near-perfect absorption at wide angles, and insensitivity to polarization. The structure exhibits an average absorption of 98.

View Article and Find Full Text PDF

Electromagnetic metamaterials have demonstrated immense potential in the development of novel high-temperature wave-transparent materials, yet the requirements of their intricate structural design and strict stability pose dual challenges, particularly in high-speed radome applications. A strategy involving the synergistic modulation of boron nitride (BN) by dual metallic elements of Ca and Al (0.5Ca-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!