The biological control efficacy of a greenhouse soil bacterial mixture of Lactobacillus farraginis, Bacillus cereus, and Bacillus thuringiensis strains with antinematode activity was evaluated against the root-knot nematode Meloidogyne incognita. Two control groups planted in soil drenched with sterile distilled water or treated with the broadspectrum carbamate pesticide carbofuran were used for comparison. The results suggest that the bacterial mixture is effective as a biocontrol agent against the root-knot nematode.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1105.05053DOI Listing

Publication Analysis

Top Keywords

bacterial mixture
12
root-knot nematode
12
greenhouse soil
8
biocontrol agent
8
agent root-knot
8
nematode meloidogyne
8
meloidogyne incognita
8
mixture greenhouse
4
soil biocontrol
4
incognita oriental
4

Similar Publications

This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively.

View Article and Find Full Text PDF

The expansion of the seafood market has led to an increased probability of food fraud. The development of rapid and reliable traceability methods for aquatic food products is of utmost importance. In this study, direct analysis and identification of the intestinal microbiota of aquatic foods were conducted.

View Article and Find Full Text PDF

Bacterial mastitis in dairy cow is often caused by a combination of bacterial infections, such as Escherichia coli, Staphylococcus aureus, and Streptococcus agalactiae. Currently, there is no effective vaccine against the disease. Therefore, we constructed a recombinant subunit vaccine by fusing gene fragments of E.

View Article and Find Full Text PDF

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!