Methamphetamine (METH) neurotoxicity is involved in METH-related deaths. It has been suggested that the midbrain, together with the striatum, is affected by METH neurotoxicity and the endoplasmic reticulum (ER) stress is induced in the processes of METH neurotoxicity. In this study, we examined the effects of low-dose METH administration for 5d on GRP78 and C/EBP homologous protein (CHOP), both of which are induced under ER stress, and METH neurotoxicity in the rat midbrain. We showed that 1mg/kg of METH induced an increase in GRP78 protein and mRNA expression 1d after the last injection, but had no effect on the levels of CHOP, tyrosine hydroxylase (TH), or GFAP. Secondly, we evaluated the induction of ER stress and the extent of METH neurotoxicity in the midbrain of animals pretreated with METH. In animals pretreated with saline, we observed elevated CHOP levels, together with decreased TH levels and increased GFAP levels, indicative of METH neurotoxicity, after neurotoxic METH administration, while there was no significant change in GRP78 levels. In contrast, low-dose METH (1.0mg/kg) pretreatment increased GRP78 levels and inhibited the induction of CHOP in the midbrain without METH neurotoxicity. These findings of ER stress in animals pretreated with METH were associated with an early increase in SOD1 levels and upregulation of Bcl-2. Therefore, our study suggests that pretreatment with low-dose METH may be protective against METH neurotoxicity in the midbrain, leading to the suppression of oxidative stress and apoptotic mechanisms, in part via ER stress-related pathways. Because chronic human METH abusers administrate low-dose METH repeatedly over an extended period before lethal injection, investigation of the pathophysiology of METH neurotoxicity in animals pretreated with low-dose METH might provide useful information on the pathophysiology of chronic and/or lethal METH use in cases of METH-related deaths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.legalmed.2011.12.004 | DOI Listing |
Int J Mol Sci
December 2024
Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.
In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin.
View Article and Find Full Text PDFActa Pharm Sin B
November 2024
Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
Methamphetamine (METH) abuse is associated with significant neurotoxicity, high addiction potential, and behavioral abnormalities. Recent studies have identified a connection between the gut microbiota and METH-induced neurotoxicity and behavioral disorders. However, the underlying causal mechanisms linking the gut microbiota to METH pathophysiology remain largely unexplored.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2024
Department of Medicine, Ningbo University, Ningbo, Zhejiang, China.
Methamphetamine (METH) is one of the most widely abused illicit drugs globally. Despite its widespread abuse, the effects of methamphetamine on the brain and the precise mechanisms underlying addiction remain poorly understood. Elucidating these biological mechanisms and developing effective treatments is of utmost importance.
View Article and Find Full Text PDFHerz
December 2024
Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany.
Front Immunol
September 2024
NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!