The nicotinic acetylcholine receptors (nAChRs) are a family of closely related but pharmacologically distinct neurotransmitter-gated ion channels. They are therapeutic targets for a wide range of neurological disorders, and a key issue in drug development is selective targeting among the more than 20 subtypes of nAChRs that are known. The present work evaluates a proposed hydrogen bonding interaction involving a residue known as the "loop B glycine" that distinguishes receptors that are highly responsive to ACh and nicotine from those that are much less so. We have performed structure-function studies on the loop B site, including unnatural amino acid mutagenesis, in three different nAChR subtypes and found that the correlation between agonist potency and this residue is strong. Low potency receptor subtypes have a glycine at this key site, and mutation to a residue with a side chain converts a low potency receptor to a high potency receptor. Innately high potency receptors have a lysine at the loop B site and show a decrease in potency for the reverse mutation (i.e., introducing a glycine). This residue lies outside of the agonist binding site, and studies of other residues at the agonist binding site show that the details of how changes at the loop B glycine site impact agonist potency vary for differing receptor subtypes. This suggests a model in which the loop B residue influences the global shape of the agonist binding site rather than modulating any specific interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356501PMC
http://dx.doi.org/10.1021/cb200448jDOI Listing

Publication Analysis

Top Keywords

agonist binding
16
binding site
16
potency receptor
12
site
8
loop site
8
agonist potency
8
low potency
8
receptor subtypes
8
high potency
8
potency
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!