The gastrin-releasing peptide receptor (BB2r) has shown great promise for tumor targeting due to the increase of the receptor expression in a variety of human cancers including prostate, breast, small-cell lung, and pancreatic cancer. From clinical investigations, prostate cancer has been shown to be among the most hypoxic of the cancers investigated. Many solid tumors contain regions of hypoxia due to poor organization and efficiency of the vasculature. However, hypoxia is typically not present in normal tissue. Nitroimidazoles, a thoroughly investigated class of hypoxia selective drugs, have been shown to be highly retained in hypoxic tissues. The purpose of this study is to determine if the incorporation of hypoxia trapping moieties into the structural paradigm of BB2r-targeted peptides will increase the retention time of the agents in prostate cancer tumors. The present work involves the design, syntheses, purification, and in vitro investigation of hypoxia enhanced (111)In-BB2r-targeted radioconjugates. A total of four BB2r-targeted conjugates (1-4) were synthesized and coupled with increasing numbers of 2-nitroimidazoles, a hypoxia trapping moiety. Conjugates were radiolabeled with (111)In and purified by HPLC prior to in vitro studies. Receptor saturation assays under both normoxic and hypoxic conditions showed that the BB2r receptor expression on the PC-3 human prostate cancer cell line was not significantly affected by oxygen levels. Competitive binding assays revealed that incorporation of 2-nitroimidazoles had a detrimental effect to BB2r binding when adequate spacer groups, between the hypoxia trapping agent and the pharmacophore, were not employed. All of the 2-nitroimidazole containing BB2r-targeted agents exhibited significantly higher longitudinal retention in PC-3 cells under hypoxic conditions compared to the analogous normoxic studies. Protein association analysis revealed a 3-fold increase in binding of a 2-nitroimidazole containing BB2r-targeted agent under hypoxic relative to normoxic conditions. The positive nature of these results indicate that further exploration into the potential of hypoxia selective trapping agents for BB2r-targeted agents, as well as other targeted compounds, is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310374PMC
http://dx.doi.org/10.1021/bc200600wDOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
hypoxia trapping
12
hypoxia enhanced
8
pc-3 human
8
human prostate
8
receptor expression
8
hypoxia
8
hypoxia selective
8
hypoxic conditions
8
2-nitroimidazole bb2r-targeted
8

Similar Publications

Reply to: Inferior Control Arms in Prostate Cancer Trials: The ARANOTE Trial.

J Clin Oncol

January 2025

Fred Saad, MD, University of Montreal, Montreal, QC, Canada; Egils Vjaters, MD, P. Stradinš Clinical University Hospital, Riga, Latvia; Isabella Testa, MD, Bayer S.p.A, Milan, Italy; and Kunhi Parambath Haresh, MD, All India Institute of Medical Sciences, New Delhi, India.

View Article and Find Full Text PDF

Inferior Control Arms in Prostate Cancer Trials: The ARANOTE Trial.

J Clin Oncol

January 2025

Abhenil Mittal, MD, DM, MBBS and Geordie Linford, MD, MSc, BSc, Department of Oncology, Northeast Cancer Center, Health Sciences North, Sudbury, ON, Canada, Division of Clinical Sciences, Northern Ontario School of Medicine, ON, Canada; and Bishal Gyawali, MD, PhD, FASCO, Department of Oncology, Queen's University, Kingston, ON, Canada, Department of Public Health Sciences, Queen's University, Kingston, ON, Canada, Division of Cancer Care and Epidemiology, Queen's University, Kingston, ON, Canada.

View Article and Find Full Text PDF

Background: Prostate cancer remains the most frequent cancer among men, representing a significant health burden. Despite its high morbidity and mortality rates, the etiology of prostate cancer remains relatively unknown, with only non-modifiable established risk factors. Chronic inflammation has emerged as a potential factor in prostate carcinogenesis.

View Article and Find Full Text PDF

Precise surgical resection of prostate cancer (PCa) is a significant clinical challenge due to the impact of positive surgical margins on postoperative outcomes. Fluorescence-guided surgery (FGS) enables real-time tumor visualization using fluorescent probes. In this study, we synthesized and evaluated an indocyanine green (ICG)-based PSMA-targeted near-infrared probe, , for intraoperative imaging of PCa lesions.

View Article and Find Full Text PDF

Advancements in molecular imaging probes for precision diagnosis and treatment of prostate cancer.

J Zhejiang Univ Sci B

January 2025

Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.

Prostate cancer is the second most common cancer in men, accounting for 14.1% of new cancer cases in 2020. The aggressiveness of prostate cancer is highly variable, depending on its grade and stage at the time of diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!