We specify the O(2)(+) probe conditions and subsequent data analysis required to obtain high depth resolution secondary ion mass spectrometry profiles from multiple Ge/Si(1-x)Ge(x) quantum well structures (0.6 ≤ x ≤ 1). Using an O(2)(+) beam at normal incidence and with energies >500 eV, we show that the measured Ge signal is not monotonic with concentration, the net result being an unrepresentative and unquantifiable depth profile. This behavior is attributed to a reduced Ge ionization rate as x approaches 1. At lower beam energies the signal behaves monotonically with Ge fraction, indicating that the Ge atoms are now ionizing more readily for the whole range of x, enabling quantitative profiles to be obtained. To establish the depth scale a point-by-point approach based on previously determined erosion rates as a function of x is shown to produce quantum well thicknesses in excellent agreement with those obtained using transmission electron microscopy. The findings presented here demonstrate that to obtain reliable quantitative depth profiles from Ge containing samples requires O(2)(+) ions below 500 eV and correct account to be taken of the erosion rate variation that exists between layers of different matrix composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac202929x | DOI Listing |
Biomed Opt Express
January 2025
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Optical coherence tomography angiography (OCTA) offers unparalleled capabilities for non-invasive detection of vessels. However, the lack of accurate models for light-tissue interaction in OCTA jeopardizes the development of the techniques to further extract quantitative information from the measurements. In this manuscript, we propose a Monte Carlo (MC)-based simulation method to precisely describe the signal formation of OCTA based on the fundamental theory of light-tissue interactions.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States.
Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by the time-consuming process of generating the necessary training, validation, and test data for MLP models through QM/MM simulations. Furthermore, the entire process needs to be repeated for each specific enzyme system and reaction.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.
A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea.
Graphene quantum dots (GQDs) have received much attention for their biomedical applications, such as bioimaging and drug delivery. Additionally, they have antioxidant and anti-inflammatory properties. We used GQDs to treat renal fibrosis and confirmed their ability to protect renal cells from excessive oxidative stress in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!