Degraded alginate compounds with molecular weights of 7-26, 40-77, or 11-26 kDa were obtained by γ irradiation, hydrogen peroxide (5% H(2)O(2)) treatment, or a combination treatment involving ionizing radiation and H(2)O(2), respectively. The 14 kDa oligoalginate, prepared by the combined method, promoted the growth of mustard greens and lettuce at an optimal concentration of 75 mg/L. The growth promotion effects of the oligoalginate prepared by γ irradiation in the presence of H(2)O(2) were statistically equivalent to those of the oligoalginate prepared by γ irradiation only. The combination of γ irradiation and H(2)O(2) reduced the required irradiation dosage by a factor of 9 relative to the oligoalginate produced by γ irradiation only. The combination treatment (γ irradiation/H(2)O(2)) may be carried out on a large scale at low cost to produce oligoalginate for use as a plant growth promoter in agricultural industries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf204469pDOI Listing

Publication Analysis

Top Keywords

oligoalginate prepared
12
oligoalginate plant
8
plant growth
8
growth promoter
8
hydrogen peroxide
8
combination treatment
8
prepared irradiation
8
irradiation combination
8
irradiation
7
oligoalginate
5

Similar Publications

Biomedical potentials of alginate via physical, chemical, and biological modifications.

Int J Biol Macromol

October 2024

State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China. Electronic address:

Alginate is a linear polysaccharide with a modifiable structure and abundant functional groups, offers immense potential for tailoring diverse alginate-based materials to meet the demands of biomedical applications. Given the advancements in modification techniques, it is significant to analyze and summarize the modification of alginate by physical, chemical and biological methods. These approaches provide plentiful information on the preparation, characterization and application of alginate-based materials.

View Article and Find Full Text PDF

Aqueous solutions of alginate (4 %) with or without hydrogen peroxide (0-2 % HO) were irradiated under a gamma Co-60 source. The effect of dose rate on the radiation scission yield (Gs) of resulting irradiated alginate was determined. At the dose of 20 kGy, the G(s) value of irradiated alginate decreased with the increase dose rate, suggesting that the irradiation at a suitable dose rate could further improve the radiation chemical yield of degradation.

View Article and Find Full Text PDF

Preparation, Structural Characterization, and Enzymatic Properties of Alginate Lyase Immobilized on Magnetic Chitosan Microspheres.

Appl Biochem Biotechnol

August 2024

College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China.

Alginate lyase is an enzyme that catalyses the hydrolysis of alginate into alginate oligoalginates. To enhance enzyme stability and recovery, a facile strategy for alginate lyase immobilization was developed. Novel magnetic chitosan microspheres were synthesized and used as carriers to immobilize alginate lyase.

View Article and Find Full Text PDF

Alginate, an anionic heteropolysaccharide extracted from natural brown algae, has useful properties for the food, chemical, medical, and agricultural industries. Degradation of alginate by alginate lyase is a key process to produce unsaturated oligoalginate and unsaturated monosaccharide 4-deoxy-l-erythro-5-hexoseulose uronic acid. Alginate lyases belonging to the polysaccharide lyase family 7 have been found in, and isolated from, organisms thriving in various environments.

View Article and Find Full Text PDF

Degraded alginate compounds with molecular weights of 7-26, 40-77, or 11-26 kDa were obtained by γ irradiation, hydrogen peroxide (5% H(2)O(2)) treatment, or a combination treatment involving ionizing radiation and H(2)O(2), respectively. The 14 kDa oligoalginate, prepared by the combined method, promoted the growth of mustard greens and lettuce at an optimal concentration of 75 mg/L. The growth promotion effects of the oligoalginate prepared by γ irradiation in the presence of H(2)O(2) were statistically equivalent to those of the oligoalginate prepared by γ irradiation only.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!