The O/β-quartz interaction is described by combining our time-dependent semiclassical approach to atom-molecule/surface scattering with first-principles electronic structure calculations at the DFT (PBE0) level of accuracy. In particular, the O, O(2) interaction potentials with an on-top Si atom and its nearest O atom both localized over three different silica clusters have been calculated as a function of the oxygen-silica approaching distance. The calculated DFT potential energy surface has been used in semiclassical trajectory calculations to investigate the sticking and inelastic reflection of oxygen atoms from a model β-quartz surface. The collisional mechanism, including the role played by the phonon dynamics, is brought to light and accurate sticking probabilities are calculated at five impact energies in the range [0.05-0.8] eV and T(S) = 1000 K. The different catalytic response of β-quartz and β-cristobobalite to the atomic oxygen flux is also discussed and highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp205517j | DOI Listing |
Small
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
This study investigates the combustion characteristics and critical thermodynamic conditions for the ignition of TC4 and TC17 alloys under high-speed friction conditions. The results indicate that, under identical rubbing conditions, both the critical pressure and the ignition temperature of the TC17 alloy are higher than those of the TC4 alloy. The critical ignition conditions for both alloys increase with thickness, while they decrease with increasing rotational speed, oxygen concentration, and oxygen pressure.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
Int J Biol Macromol
January 2025
School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:
Some biomasses like cotton contain natural fibrous structures. This is a desirable structural feature for exposure of adsorption sites on cotton-derived activated carbon (AC). This was verified herein by conducting activation of cotton with ZnCl, HPO, KCO or KOH, probing whether structural transformation during activation could be confined inside a cotton fiber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!