[Influence of bioleaching on dewaterability of cattle biogas slurry].

Huan Jing Ke Xue

Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.

Published: November 2011

The dewaterability of cattle biogas slurry facilitated by bioleaching was investigated through batch experiments with co-inoculation of different Acidophilic thiobacilli (Acidithiobacillus thiooxidans TS6 or Acidithiobacillus ferrooxidans LX5). The experiment was set the following 5 treatments: (1) original biogas slurry (CK), (2) 4 g x L(-1) Fe(2+) (uninoculation), (3)2 g x L(-1) S(0) + 25 mL A. t, (4) 4 g x L(-1) Fe(2+) + 25 mL A. f and (5) 2 g x L(-1) S(0) + 4 g x L(-1) Fe(2+) + 12.5 mL A. t + 12.5 mL A. f. During bioleaching, dynamic changes of pH, ORP, Fe(2+), F(3+), total Fe, the settleability, the turbidity of the supernatant after settling for 12 h, and the dewaterability (expressed as specific resistance to filtration gamma or capillary suction time, CST) of biogas slurry were monitored. Results show that specific resistance gamma and CST of bioleached biogas slurry are reduced drastically for the treatments of original biogas slurry spiked with only Fe(2+), the treatment of original biogas slurry co-spiked with Fe(2+) and Acidithiobacillus ferrooxidans LX5, and the treatment of original biogas slurry co-spiked with Fe(2+), S(0) and two Acidophilic thiobacilli. Taking the dewaterability, settleability, the turbidity of the supernatant fluid after settle 12 h and economical cost into account, the treatment of original biogas slurry co-spiked with Fe(2+) and Acidithiobacillus ferrooxidans LX5 is the most suitable pattern for cattle biogas slurry bioleaching. After bioleaching, 1.14% of organic matter, 0.09% of N, 0.05% of P, and 0.1% of K are lost in the bioleaching process, but it don't affect its fertilizer efficiency. Meanwhile, the 63.2% of Cu and 91.3% of Zn are removed from the biogas slurry, and elimination efficiencies of total coliforms in bioleached slurry exceed 99%. This study might provide a new approach for treatment and disposal of biogas slurry.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biogas slurry
44
original biogas
20
biogas
12
cattle biogas
12
slurry
12
acidithiobacillus ferrooxidans
12
ferrooxidans lx5
12
l-1 fe2+
12
treatment original
12
slurry co-spiked
12

Similar Publications

Long-term effect of repeated application of pig slurry digestate on microbial communities in arable soils.

Heliyon

January 2025

Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.

Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments.

View Article and Find Full Text PDF

Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy.

J Environ Manage

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.

Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.

View Article and Find Full Text PDF

Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum.

View Article and Find Full Text PDF

Biogas can be used for complementary load-balancing with renewable intermittent power, thus maintaining overall energy output stability. However, biogas load balancing load balancing is typically used in small-scale distributed energy systems, constrained by factors such as technology and land requirements, making it challenging to scale up. Therefore, this study proposes a closed-loop ecological cycle system, where biogas provides load leveling support for large-scale intermittent power sources in desertified regions dominated by animal husbandry.

View Article and Find Full Text PDF
Article Synopsis
  • Aqueous-phase reforming (APR) is a method to convert biogas slurry into renewable hydrogen, but requires an effective catalyst due to variations in slurry characteristics.
  • A novel catalyst made from molybdenum-based metal-organic frameworks (Mo-MOF) showed promising results, resulting in optimal hydrogen yields when using biogas slurry from 6 days of fermentation.
  • The study found that the catalyst's specific properties, like a larger surface area and reduced acidity, made it more efficient for the APR process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!