[Study of the removal of Pb2+ from aqueous solution by poly-gamma-glutamic acid coated magnetic nanoparticles].

Huan Jing Ke Xue

Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.

Published: November 2011

In this study, a novel low cost magnetic adsorbent material prepared by poly-gamma-glutamic acid (gamma-PGA) coating Fe3o4 magnetic particles, which was called coated magnetic namoparticles (PG-M) was developed for the removal of Pb2+ from water by Dr. Yasuzawa. The particle size of PG-M was about 120-320 nm, and there was no significant difference in Fe3O4 and PG-M particle size, Fe3O4 was only as the support of PG-M core and did not directly involve in the reaction. The shape of PG-M was irregular cubic structure. The experiments were applied to quantify adsorptive time, pH, competitive ion and organics on the removal effect of Pb2+. The results showed that PG-M was effective in removal of Pb2+; the equilibrium amount of adsorptive was as high as 93.3 mg/g and the optimized condition of pH value for metal ions removal was 7.0, while contact time was about 45 min. The removal efficiency of Pb2+ was not significantly influenced by Na+ while was reduced with the increasing concentration of Ca2+. The removal of Pb2+ was enhanced with the presence of organic matter (humic acid, HA) when the concentration of HA was below 5 mg/L, and decreased when the concentration of HA exceeded 5 mg/L. Langmuir isotherms fitted the experimental data better compared to Freundlich isotherms. Pseudo second order model well described the sorption kinetics of Pb2+. The used PG-M can be desorbed by 0.1 mol/L HCl and became reusable. PG-M is nontoxic and eco-friendly, which have a good prospect in water treatment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

removal pb2+
20
poly-gamma-glutamic acid
8
coated magnetic
8
pg-m
8
particle size
8
pb2+ pg-m
8
pb2+
7
removal
6
[study removal
4
pb2+ aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!