The ability of retroviruses and transposases to insert own genome into a host-cell allow us to consider them as a preferable object for constructing gene therapy vectors. However, enzymes that perform the insertion of the genetic material do not display a selectivity towards target nucleotide sequences that results in an almost random DNA introduction into the recipient cell genome. Random insertion leads to mutations which might cause a number of undesirable consequences including neoplastic transformation in the cell. Thereby, in order to achieve a successful functioning of retroviral and trasposonal genetic therapy systems, it is essential to modify them in such a way that directed integration of the vector in a target sequence in the human genome could be achieved. In the review approaches that have been developed for a high specific modification of genome, including the construction of hybrid proteins on the basis of retroviral integrases, transposases, as well as cellular factors interacting with these enzymes, are presented.

Download full-text PDF

Source

Publication Analysis

Top Keywords

retroviral integrases
8
[approaches directed
4
directed dna
4
dna integration
4
integration retroviral
4
integrases transposases]
4
transposases] ability
4
ability retroviruses
4
retroviruses transposases
4
transposases insert
4

Similar Publications

Indonesia has one of the highest HIV infection rates in Southeast Asia. The use of dolutegravir, an integrase strand transfer inhibitor (INSTI), as a first-line treatment underscores the need for detailed data on INSTI drug resistance mutations (DRMs). Currently, there is a lack of comprehensive data on DRMs INSTI and other HIV drug resistance in Indonesian patients, both pre- and post-treatment.

View Article and Find Full Text PDF

Effectiveness of bi-monthly long-acting injectable cabotegravir and rilpivirine as maintenance treatment for HIV-1 in the Netherlands: results from the Dutch ATHENA national observational cohort.

Lancet HIV

January 2025

Stichting HIV Monitoring, Amsterdam, Netherlands; Department of Infectious Diseases, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands.

Background: Real-world data showing the long-term effectiveness of long-acting injectable cabotegravir and rilpivirine are scarce. We assessed the effectiveness of cabotegravir and rilpivirine in all individuals who switched to cabotegravir and rilpivirine in the Netherlands.

Methods: We used data from the ATHENA cohort, an ongoing observational nationwide HIV cohort in the Netherlands.

View Article and Find Full Text PDF

Genetic Diversity and Antiretroviral Resistance in HIV-1-Infected Patients Newly Diagnosed in Cabo Verde.

Viruses

December 2024

Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.

The high genetic variability of HIV-1 and the emergence of transmitted drug resistance (TDR) can impact treatment efficacy. In this study, we investigated the prevalent HIV-1 genotypes and drug-resistance-associated mutations in drug-naïve HIV-1 individuals in Cabo Verde. The study, conducted between 2018 and 2019, included drug-naïve HIV-1 individuals from the São Vicente, Boa Vista, Fogo, and Santiago islands.

View Article and Find Full Text PDF

The HIV integrase inhibitor, dolutegravir (DTG), in the absence of eliciting integrase (int) resistance, has been reported to select mutations in the virus 3'-polypurine tract (3'-PPT) adjacent to the 3'-LTR U3. An analog of DTG, cabotegravir (CAB), has a high genetic barrier to drug resistance and is used in formulations for treatment and long-acting pre-exposure prophylaxis. We examined whether mutations observed for DTG would emerge in vitro with CAB.

View Article and Find Full Text PDF

Dual therapies (DT) combining integrase strand transfer inhibitors (INSTIs) with second-generation non-nucleoside reverse transcriptase inhibitors (2nd-Gen-NNRTIs) offer new possibilities for HIV treatment to improve adherence. However, drug resistance associated mutations (RAMs) to prior antiretrovirals may jeopardize the efficacy of DT. We herein describe the predicted efficacy of DT combining INSTIs + 2nd-Gen-NNRTI following treatment failure among Cameroonian patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!