Whispering gallery mode resonances in liquid droplets and microspheres have attracted considerable attention due to their potential uses in a range of sensing and technological applications. We describe a whispering gallery mode sensor in which standard optical fibre is used as the whispering gallery mode resonator. The sensor is characterised in terms of the response of the whispering gallery mode spectrum to changes in resonator size, refractive index of the surrounding medium, and temperature, and its measurement capabilities are demonstrated through application to high-precision fibre geometry profiling and the detection of unlabelled biochemical species. The prototype sensor is capable of detecting unlabelled biomolecular species in attomole quantities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264450 | PMC |
http://dx.doi.org/10.3390/s100301765 | DOI Listing |
Rev Sci Instrum
January 2025
Hubei Key Laboratory of Optoelectronic Conversion Materials and Devices, Hubei Engineering Research Center for Micronano Optoelectronic Devices and Integration, College of Physics and Electronic Science, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China.
A novel whispering-gallery mode (WGM) sensor is fabricated by coupling a tapered two-mode fiber and a glass capillary. By utilizing the relatively large orifice of glass capillaries, polydimethylsiloxane (PDMS) and magnetic fluid are directly injected into two WGM structured glass capillaries, respectively, allowing these materials to substantially interact with the light field of the WGM, thereby achieving temperature, pressure, and magnetic field measurements. λ1 and λ2 are the two resonant peak wavelengths of the WGM after injecting PDMS into a glass capillary.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Micro/nano Devices and Systems, Ministry of Education, North University of China, Taiyuan, 030051, China.
As the hyperentanglement of photon systems holds lots of remarkable applications for enhancing channel capacity with less quantum resource, the interconversion of various hyperentangled states warrants in-depth investigation and becomes a vital work for quantum information technologies. Here we realize completely mutual conversions between spatial-polarization hyperentangled Knill-Laflamme-Milburn state and hyperentangled W state for three-photon systems, resorting to hyperparallel quantum control gates and the practical nonlinear interaction of nitrogen-vacancy centers coupled with whispering-gallery-mode microresonators. The hyperparallel quantum gates, i.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China.
Over the past decade, semiconducting halide perovskite lasers have emerged as a transformative platform in optoelectronics, owing to unique properties such as high photoluminescence quantum yields, tunable bandgaps, and low-cost fabrication processes. This review systematically examines the advancements in halide perovskite lasers, covering diverse laser architectures, such as whispering gallery mode, Fabry-Pérot, plasmonic, bound states in the continuum (BIC), quantum dot, and polariton lasers. The mechanisms of optical gain, the role of material engineering in optimizing lasing performance, and the challenges associated with continuous-wave (CW) pumping and electrically driven lasing are discussed.
View Article and Find Full Text PDFA novel, to the best of our knowledge, optical fiber whispering-gallery mode (WGM) sensor for simultaneously measuring humidity and temperature is proposed and investigated. The proposed sensor is realized by a polyvinyl alcohol (PVA)-coated capillary tube coupling with an optical single-mode fiber (SMF), which is integrated with a fiber Bragg grating (FBG). The as-fabricated sensor can be used not only for relative humidity (RH) sensing but also for temperature detection.
View Article and Find Full Text PDFNat Protoc
January 2025
Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA.
Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!