Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vitamin C (ascorbic acid) plays important roles as an anti-oxidant and in collagen synthesis. These important roles, and the relatively large amounts of vitamin C required daily, likely explain why most vertebrate species are able to synthesize this compound. Surprisingly, many species, such as teleost fishes, anthropoid primates, guinea pigs, as well as some bat and Passeriformes bird species, have lost the capacity to synthesize it. Here, we review the genetic bases behind the repeated losses in the ability to synthesize vitamin C as well as their implications. In all cases so far studied, the inability to synthesize vitamin C is due to mutations in the L-gulono-γ-lactone oxidase (GLO) gene which codes for the enzyme responsible for catalyzing the last step of vitamin C biosynthesis. The bias for mutations in this particular gene is likely due to the fact that losing it only affects vitamin C production. Whereas the GLO gene mutations in fish, anthropoid primates and guinea pigs are irreversible, some of the GLO pseudogenes found in bat species have been shown to be reactivated during evolution. The same phenomenon is thought to have occurred in some Passeriformes bird species. Interestingly, these GLO gene losses and reactivations are unrelated to the diet of the species involved. This suggests that losing the ability to make vitamin C is a neutral trait.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145266 | PMC |
http://dx.doi.org/10.2174/138920211796429736 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!