Prolactin (Prl) receptor (Prlr) gene is expressed in various brain regions, with the highest level present in the choroid plexus, a site for receptor-mediated PRL transport from the blood to cerebrospinal fluid. We investigated the regulatory mechanism of Prlr gene expression by PRL in the murine choroid plexus. We first examined the organization of the alternative first exons in murine Prlr gene. In addition to the three known first exons, mE1(1), mE1(2), and mE1(3), two first exons, mE1(4) and mE1(5), were newly identified by cDNA cloning. Each first exon variant of Prlr mRNA exhibited tissue-specific or generic expression. In the choroid plexus of mice, the expression levels of mE1(3)-, mE1(4)-, and mE1(5)-Prlr mRNAs were increased in the lactating mice compared with those in the diestrus mice. Furthermore, the expression level of mE1(4)-Prlr mRNA was decreased in the PRL-deficient (Prl(-/-)) mice compared with the PRL-normal (Prl(+/+) and Prl(+/-)) mice. In the ovariectomized Prl(-/-) mice, the expression level of mE1(4)-Prlr mRNA was significantly increased by PRL administration but not by 17β-estradiol administration. The expression levels of the two last exon variants of Prlr mRNAs, encoding the long and short cytoplasmic regions of PRLR, were also increased in the lactating mice and decreased in the Prl(-/-) mice. These findings suggest that PRL stimulates the Prlr gene expression through the transcriptional activation of mE1(4) first exon, leading to increases in the long- and short-form variants of Prlr mRNA in the murine choroid plexus.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JME-11-0122DOI Listing

Publication Analysis

Top Keywords

choroid plexus
20
prlr gene
16
mice expression
12
prl-/- mice
12
exons murine
8
expression
8
expression choroid
8
prlr
8
gene expression
8
murine choroid
8

Similar Publications

Chemokine associations with blood cerebrospinal fluid (CSF) barrier permeability and delirium.

Brain Behav Immun Health

February 2025

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.

Delirium is a highly prevalent neuropsychiatric syndrome characterised by acute and fluctuating impairments in attention and cognition. Mechanisms driving delirium are poorly understood but it has been suggested that blood cytokines and chemokines cross the blood brain barrier during delirium, directly impairing brain function. It is not known whether these molecules reach higher brain levels when the blood cerebrospinal fluid barrier (BCSFB) is impaired.

View Article and Find Full Text PDF

Introduction: The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid.

View Article and Find Full Text PDF

Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.

Neuroinformatics

January 2025

Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.

Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain.

View Article and Find Full Text PDF

[F]R91150: Improved radiosynthesis and in vivo evaluation as imaging probe for 5-HT receptors.

Eur J Med Chem

January 2025

Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Straße 62, 50937, Cologne, Germany.

Serotonergic 5-HT receptors in the cortex and other forebrain structures have been linked to cognitive, emotional and memory processes. In addition, dysfunction or altered expression of these receptors is associated with neuropsychiatric and neurodegenerative disorders. [F]R91150 is a candidate radiotracer for positron emission tomography (PET) imaging of 5-HT receptors, which showed promising properties in in vitro studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!